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Preface

The Computational Aeroacoustics (CAA) Workshops on Benchmark Problems have been organized to gauge the
technological advancement of computational techniques to calculate all aspects of sound generation and propagation in air directly
from the fundamental governing equations. The first Workshop, held in 1994, emphasized the basic technical challenges to accurate
CAA calculations. Some of these challenges were the extraction of small acoustic quantities from a large magnitude background
field, the sensitivity of propagating waves to dissipation and dispersion errors over large distances, the usually higher frequencies
of sound versus lower frequency unsteady events, the stability of the calculations over long times to enable spectral calculations,
the proper acoustic boundary conditions at open and solid surfaces, and the nonlinear effects at high Mach numbers. The benchmark
problems had the simple geometries and the idealized acoustic conditions necessary to test the accuracy and effectiveness of
computational algorithms and numerical boundary conditions. For the second Workshop in 1996, benchmark problems with more
realistic conditions were designed to show the applicability of CAA to solve practical problems, such as, two- and three-dimensional
scattering, radiation from a duct, and gust interaction with a cascade of flat plates. There was also the initial challenge to compute
the sound generated by a separating turbulent flow.

The Third CAA Workshop builds on the emphasis in the second Workshop of computing realistic problems. The Workshop
was held at the Ohio Aerospace Institute in Cleveland, Ohio, on November 8-10, 1999. This publication documents the numerical
predictions and comparisons with solutions to the benchmark problems. Fan noise was chosen as the theme for this workshop with
problems in four of the six benchmark problem categories representing issues involved in computing fan noise. Recognition is also
given to the fact that as problems become more realistic and more complicated, exact or asymptotic solutions become more difficult
to obtain. Thus, an initial step is made here to compare computational results to data from a well-documented experiment. The
benchmark problems encompassed the following six categories.

Category 1 - Internal Propagation. The propagation of sound through a narrow passage with flow exists in many applications. One
problem models the upstream propagation of sound through a nozzle with near sonic conditions. The computations must account
for a ten-fold change in wavelength and out-going waves at each end of the nozzle. In a second problem, a shock is present in the
nozzle making nonlinearities important.

Category 2 - Rotor Noise. The sound field generated by a rotor is affected by its environment. An open rotor will radiate noise. When
placed in a duct, conditions can be such that no noise is radiated; the cut-off condition.

Category 3 - Sound Generation by Interaction with a Gust. Sound is generated when a vortical gust interacts with an airfoil. This
noise source mechanism exists in turbomachinery applications. The three problems in this category were designed to show CAA
calculations for a single thick airfoil, a single airfoil with sweep, and a cascade of swept airfoils. In all three cases, a steady mean
flow exists.

Category 4 - Fan Stator with Harmonic Excitation by a Rotor Wake. Rotor-stator interaction is a large source of noise in turbofan
engines. The wakes from a rotor rotating in a cylindrical annulus are represented as a convecting wave of radial vorticity. This wave
interacts with a stator cascade of flat plates to create sound described by its modal content.

Category 5 - Generation and Radiation of Acoustic Waves from a 2-D Shear Layer. In high-speed jets, instability waves become
an important source of radiated noise. The problem was designed to show the ability of CAA to compute the source of this
radiated noise.

Category 6 - Automobile Noise Involving Feedback. Under certain conditions, the flow over a cavity generates acoustic tones. The
phenomenon depends on the thickness of the approaching boundary layer. Thus, viscosity is an important fluid property. The
challenge is to compute a sound source that is inherent in the fluid dynamics. Experimental data is provided for comparison to the
computed solution in this category.

Solutions are provided for the benchmark problems in Categories 1 to 5. Even though no CAA computations were

performed for comparison to the solutions of the Category 3, Problem 2, and the Category 4 problems, their solutions are provided
for completeness and in the hope that these problems will be tried in the future.

NASA/CP—2000-209790 iii



These proceedings are available on CD-ROM in the PDF document format. In addition, the CD-ROM contains information related
to all 6 categories of the benchmark problems including the numerical results from the calculations of the analytical solutions and
the experimental data for the Category 6 problem. See the README file in the CD-ROM directory entitled, "caawksp3data” for
further details.
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Benchmark Problems—Category 1

Problem 1: Propagation of Sound Waves through a Transonic Nozzle

In a transonic cascade, the local Mach number of the flow in the narrow passages may be close to sonic. The computation of sound
propagating through such regions presents a challenging problem. To reduce the complexity of the problem, but retaining the basic
physics and difficulties, we will model such propagation problems by a one-dimensional acoustic wave transmission problem

through a nearly choked nozzle.

We will use the following as characteristic scales.

length scale = diameter of nozzle in the uniform region downstream of the throat (see figure), D
velocity scale = speed of sound in the same region, a__.

D
time scale =

(2288

density scale = mean density of gas in the same region, p__.
2

oo’

pressure scale =p__a
Consider a one-dimensional nozzle with an area distribution as follows

X

—(n2 ( )
_ }0.536572 —0.198086¢ 06/ x>0
Ax)=

(7ln2)(i)
1.0-0.661514¢ 06/ x<0

The governing equations in dimensionless form are,

8_p+lap_uA=0

Jot A ox

du du), op _

p(8t+u8x)+8x_0
op O(puA) o(uA)
AL -1 -
ot T =0

The Mach number in the uniform region downstream of the throat is y= 1.4.

Small amplitude acoustic waves, with angular frequency ®= 0.6, is generated way downstream and propagate upstream through
the narrow passage of the nozzle throat. Let the upstream propagating wave in the uniform region downstream of the nozzle throat

be represented by
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Benchmark Problems—Category 1

where € = 1075 . Use a computation domain of size 20, 10 upstream and 10 downstream of the nozzle throat, to calculate the
distribution of maximum acoustic pressure inside the nozzle.

This problem can, of course, be calculated accurately if a very large number of mesh points is used. But this is not always practical.
Itis recommended that no more than 400 mesh points be used. Report the locations of your mesh points and the pressure distribution.
Also report the total number of mesh points used.

> Acoustic /
wave —» M=04
JANVAN I
R VARVAR

. \—>

X = 0, throat

Propagation of sound through a transonic throat of a subsonic nozzle.
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Benchmark Problems—Category 1

Problem 2: Shock-Sound Interaction

In imperfectly expanded supersonic jets, shock-cell structures are formed downstream of the nozzle exit. To simulate the shock-
sound interactions, the problem is simplified as a sound wave passing through a shock in a quasi-1-D supersonic nozzle.

This problem uses the same geometry as Problem 1, but now there is a supersonic shock downstream of the throat.

In this problem, the quasi-1-D Euler equations are solved:

0 0
E(PA) + g(PMA) =0

du du) OJp

—tu—Il+X=0 1
p(at +u8x)+8x L

d 0 d
= - —1)p—(uA) =
at(pA)+ax(puA)+(’y )pax(u) 0

All quantities are nondimensionalized using the upstream values:

length scale = D¢
density scale = pjpjer
velocity scale = a;er @)
pressure scale = pinleta%nlet

) D;
time scale = —nlet

Ainlet
where D is the nozzle height and a is the speed of sound. y= 1.4
As before, the domain is —10<x<10, and the area of the nozzle is given by:
-

2
3)26) , x>0 3)

x<0

—(In 2)(

Ax) = 0.536572 — 0.198086¢

X

(-In2 (
1.0 — 0.661514¢ 0.6

At the inflow boundary, the conditions are:
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Benchmark Problems—Category 1

p 1 1
ul=| M |+|1 esinl:a)( a —t)] (4)
1+M
P 1/y 1
where:
e=1.0x10"
®=0.6m )

Mo = 0.2006533

The pressure will be set at the outflow boundary to create a shock:
(P)exit = 0.6071752 (6)
The data required for this problem is:
1. Grid used for the problem (i,x)
2. On the domain —10.0<x<10.0, give

a. Steady mean distribution (x, p(x),#(x), p(x))
b. Perturbation at the start of a period (x,p(x) — p(x), u(x) — #(x), p(x) — p(x))

N}

. Over the period of the perturbation, give:

4. Pressure perturbation at the exit plane through one period (1, p(t) — p(1))
a. The format in FORTRAN is:

format (4(3x, €18.5))

Sound wave

Shock

Sound wave—normal shock interaction.
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Benchmark Problems—Category 2

Comparison between the sound field generated by an open rotor and the sound field generated by the same rotor placed inside
a semi-infinite duct.

The sound field associated with an open rotor and that associated with the same rotor placed inside a semi-infinite duct (see figures
at the end of the problem) can be extremely different. A good understanding of the differences is important in fan noise work.

We will use nondimensional variables with respect to the following scales.

length scale = b (length of blade)

velocity scale =a__ (ambient sound speed)
) b

time scale = Z

density scale P.. (ambient gas density)
pressure scale = Podl

body force scale (per unit volume) = Pwai

A rotor exerts a rotating force on the fluid. As a model problem, we will replace the rotor by a distribution of rotating body force.
The governing equations are the linearized Euler equations. In cylindrical coordinates (r, (]), x), they are,

v dap
—=—-—"+F
ot or "
ow__19p
o  rap °
M
Ju op
—=-++F
ot ox 7V
dp 19(vr) 1ow  du
—+— +——+—=0
ot r dr raddp ox
where (F o F o F x) are the components of the body force.
For simplicity, we will let .= 0 and
[F¢(V, 0, x, t)] _Re Ifq,(r,X) £ m(O=Q0) 2)
Fx(r’q)’x’t) Fx(r,x)

where Re{ } is the real part of. For computation purposes, we will use the following body force distribution in » and x.
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- FOrL,(Ayr) r<1

F =

Fx(r,x)={g(x)Jm(mer) e 4)
F(x)= exp{—(ln 2)(10x)2} (5)

where J, () is the mth-order Bessel function, 7\,mN is the Nth root of J°, or J’ | (7\,mN) =0.

In this model, m is the number of blades, € is the angular velocity of the rotor. In the ducted case N is the radial mode number.
The choice of the Bessel functions in (3) and (4) has no other significance than making the analytical solution simple.

It is possible to reduce the 3-D problem of (1) to a two-dimensional problem by factoring out the azimuthal dependence. Let

u(r, o.x.t) u(r,x.t)
v(r,d.x.t) —Re ‘E(r’ x.t) eim(]) (6)
w(r,0.x.1) w(r, x.t)
p(r,0.x.1) p(r,x.r)

The governing equations for (12, v, W, f)) are found by substituting (2) to (6) into (1) and factoring out o They are

W __p
ot or
a—w——iﬂ~+ﬁ (r, x)e M
o P Fotrs o
%z—a—ﬁ+ﬁ (r x)e_imQt
ot ox

op 10d(r) imw OJu
—_ —_ - - = O
ot - r or - r - o0x

For the open rotor case, it is only necessary to find the outgoing wave solution of (7) in the r-x-plane. In the case of the ducted
rotor, the solid wall boundary condition must be satisfied at the surface of the infinitesimally thin duct wall.

Calculate the directivity, D(0), of the radiated sound for a 8-blade rotor (m=8). Set N= 1 (7\.8 1=9.64742). In spherical coordinates
(R,G,(])), with the x-axis as the polar axis, the directivity is defined by, (for the ducted rotor, center the coordinate system at the end

of the duct)
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D®) = lim R?p*(R,0,4,1)
R—oo

where is the time average.

Consider two rotational speeds in your computation.

(a) £ = 0.85 (subsonic tip speed)
(b) € = 1.15 (supersonic tip speed)
Report the values of D(0) at 1 degree intervals.

Axis of rotor

~o
/

4 -
\ 0 ”
x axis

(a) Open rotor.

- 4D —
Semi-infinite duct

A :
- -
\ \ X axis

(b) Ducted rotor.
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Problem 1: Single Airfoil Gust Response Problem

The purpose of this problem is to test the ability of a CFD/CAA code to accurately predict the unsteady aerodynamic and
aeroacoustic response of a single airfoil to a two-dimensional, periodic vortical gust.

Consider the airfoil configuration shown in Figure 1. The airfoil has chord length ¢ and angle of attack O.. The upstream velocity
is:

U=U.i+acos[k:(x—iU..1)] (1)

where x = (x|, x,) denotes the spatial coordinates, a = (a,, a,) is the gust amplitude vector with a; = —€ U_k,/ | k | ,a,=€U_k,/
k |, k is the wave number vector, and € is a small parameter satisfying €«1.

The governing equations are the 2-D Euler equations

%+§(pu)+%(pv>=o @)
%(pu) + %(pu2 +p)+ a%(puv) =0 3)
%(pu) - a%(puv) + %(pv2 +p)=0 )

% + a% (E, + p)u] + a%[(E, +pp]=0 (5)

where P, u, v, p and E,, denote the fluid density, velocity, pressure, and internal energy per unit volume.
Since the gust amplitude a satisfies | a | «U,_,, one can alternatively solve the linearized unsteady Euler equations

Dyp’

== +p'V Uy +V-(pou)=0 (6)
Dt
D,

po(DL;l‘Fll'VUo)'Fp’UO -VU- = —Vp, (7)

Dos’
—=0 8
D1 3

D, ) . L . . . .

where Ft = 5 +Ujg -V is the material derivative associated with the mean flow, u = (u’,v’), primed quantities are the unknown

perturbation variables, and O subscripts denote steady mean flow quantities which must be independently solved for and are assumed
to be known.
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Nondimensionalize the Euler equations as follows:

X[, X by

oo

U=(u,v) by

0

co(sound speed) by U,

p by  Pe
p by pLUZ
T by T,
C
t b —_—
Y S0
W= kono by 2&
C
kl’ k2 by Z
C

If solving the linearized unsteady Euler equations, nondimensionalize the mean flow variables as above, and the perturbation
variable as follows:

For the following two cases, solve the gust response problem for a Joukowski airfoil in a two-dimensional gust with k, = k; for
reduced frequencies k1 =0.1, 1.0, and 3.0. The nondimensional upstream velocity is U =i+ €a cos (k ¢ x—klt), where a = (al,az)

V2 2
= _7’7 . Take € = .02.

For Case 1, the airfoil has a 12% thickness ratio, free stream Mach number M__ = 0.5, angle of attack Ot=0°, and a camber ratio
of zero.

For Case 2, change O to 2° and the camber ratio to .02.

The airfoil geometries can be generated as follows. Set
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G =rpe® + ©)
where

Loy =—¢) +iey (10)
is a complex constant. Letting z = x + iy denote the airfoil coordinates in the complex z-plane, the transformation

2 .
z= (Cl + ‘é—)e"‘* (11

1

transforms the Cl circle defined by equation (9) into the desired airfoil shape.

For Case 1, use ry = 0.54632753, €, = 0.05062004, €, = 0, d? =0.24572591, 0. = 0. Discretize the Cl circle in O, starting from
0 and going to 27T, and then apply equation (11) to get the airfoil coordinates. The values 0 = 0 and © = 27T map into the trailing edge
point.

For Case 2, use r; =0.54676443, €, =0.05062004, €, =0.02185310, d?=0.24572591, 0. = 0.034906585. Discretize the Cl circle
in 0, starting from 0 = —B and going to 0 = 21T— B, B =0.039978687, and then apply equation (11) to get the airfoil coordinates.
The values 0 = —B and O = 271:—[3, map into the trailing edge point.

The above procedure for generating the airfoil geometries will generate Joukowski airfoil of chord length 2, situated very nearly
between x = —1 and x = 1, where x is the nondimensional horizontal spatial coordinate. The airfoil geometries for the two cases are

shown in figure 2.

For both Case 1 and Case 2, march the discrete equations in time until the solution becomes periodic. On the airfoil surface,

calculate the mean pressure p, and the RMS pressure 1/( p,)z. In the far field, calculate the intensity ( p’)2 on a circle of radius R

=8 (four chord lengths), centered at the origin (the airfoil center). State whether the solution is from the Euler equations or linearized
equations. Also state the grid dimensions for each calculation, the number of complete periods computed, the CPU time per period,
and the type of machine on which the calculations were run on.

Output Specification

Submitted solutions to the gust response problem will consist of six files. Each file will be presented in the following format. Line
1 will state the problem number, followed by the name(s) of the submitter(s). Line 2 will state a point of contact, phone number,
and e-mail address. Line 3 will state, “Computed Airfoil Results for Case I, kl=freq, npoints = N”,where
I=1or2,freq=0.1, 1.0, or 3.0, and N is the number of data points on the airfoil. Both mean and RMS pressure values will be given
as a function of fraction of airfoil chord, (x-x; , )/c, where x| , is the x coordinate of the airfoil leading edge. Lines 4 through N+3
will be the airfoil results written out in a formatof (£12.8,2x,e16.8,2x, el6.8). The first number of each line will be the
fraction of chord value, the second number the corresponding mean pressure, and the third the corresponding RMS pressure value.
Write out the upper surface values first, followed by the lower surface values, beginning each time at the leading edge and proceeding
to the trailing edge. Line N+4 will state *Computed Far-Field Results for Case I, kl=freq, npoints=181".
The next 181 lines will be the mean square pressure values as a function of polar angle 0 on a circle of radius four chord lengths

from the airfoil center (the point on the y-axis midway between the leading and trailing edges). The 0 values will begin with 0° and
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continue up to 360° in two-degree increments. (A different © discretization is acceptable so long as “npoints” is specified
appropriately in line N+4.) The far-field results will be writtenin an (£10.2, 2x,e16.8) format, where the first number is the
angle and the second number is the corresponding mean square pressure. The next five lines will state, in order, which equations
were solved, the grid dimensions (i.e., M XN), the number of periods computed, the CPU time per period, and the type of machine
on which the calculations were run on.

- U

> Usko/lkl

Qy

Usk1/lkl —
\

-
>
3

i

Figure 1.—Airfoil in a gust with parallel and vertical components.

02.5
y 000 (
-02.5 | | | | J
-1.5 -1.0 -0.5 0.0 0.5 1.0
(a) e
02.5
y 00.0 C
025 | | | | |
-1.5 -1.0 -0.5 0.0 0.5 1.0
(b) X

Figure 2.—Joukowski airfoil geometry. (a) Case 1. (b) Case2.
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Problem 2: Unsteady Response of an Isolated Finite Span Swept
Airfoil to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic field generated as a result of the interaction
of a convected (i.e., frozen) harmonic gust with a finite span, swept, flat plate airfoil bounded by two parallel walls.

The coordinate system is chosen so that the x-axis is aligned with the chord of the airfoil (denoted by c), the y-axis is perpendicular
to it and the z-axis is normal to the bounding walls. The origin of the coordinate system is located as shown. The normal distance
between the walls is taken to be €. The sweep of the airfoil is measured by ¢, the angle between the z-axis and the leading edge of
the airfoil.

The mean flow is assumed to be uniform, unidirectional and aligned with the x-axis, i.e.,

U =(U,,0,0), Uy = constant, po = constant, Po = constant, D

The appropriate physical scales are: a; (the speed of sound) for velocity, p, for density, p ga (2) for pressure, ¢ for length and c/ay,

for time. The evolution of small perturbations superimposed on the uniform flow is governed by the three-dimensional linearized
Euler equations which, in non-dimensional form, are given by:

p Moyp+u v w
u Moyu+ p 0 0
) 9] " ) )
> v +6_ Myv +a— P +8_ 01=0 (2)
t
w * M()W Y 0 ‘ P
P Myp+u v w

where p, p, (u,v,w) denote perturbations in density, pressure and velocity components. M, is the mean flow Mach number.

The incident gust is a small-amplitude harmonic velocity fluctuation of the form
(u,v, w) =(0,Acos (kxx+kyy+kzz—a)t), 0) 3)

where k, ky, k, are the streamwise, transverse and normal gust wavenumbers and @ the harmonic frequency. The bounding walls
and the airfoil are assumed impermeable. These conditions are supplemented by the Sommerfield radiation condition. The non-
dimensional parameters of the problem are given by:

Wall spacing €lc=2.6
Sweep angle a=15°

Mean flow Mach number My=0.5

Gust amplitude A =0.05
Frequency aclay =k cM,,

Chordwise gust wavenumber | k.c=35.5
Transverse gust wavenumber kyc =0.0
Spanwise gust wavenumber k.c=3.6m
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Three cases, corresponding to three different gust orientations, are considered: m =0, m = 1, m = 2. For each case, determine the

rms acoustic pressure (i.e., Prms = l? ) halfway between the two bounding walls and along a circle that is centered at the point

(0,0,€/2) and has aradius of 5c. The overbar denotes time-averaging over one time period 27/ @ . Note that the long-time asymptotic

solution is required, so run your calculations for sufficiently large ¢ for all the transients to die out. The appropriate FORTRAN output
statement should read “WRITE ({UNIT, *) x, y, prms”.

~ Impermeable
/)
/1 walls
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Problem 3: Unsteady Response of a Rectilinear Swept Cascade to an Incident Gust

This problem is aimed at testing the ability of CAA methods to calculate the acoustic pressure field generated as a result of the
interaction of a convected harmonic gust with a rectilinear cascade of swept flat plates.

All relevant geometric information is the same as problem 2 with the exception of the sweep angle o. which is now taken to be
a variable. Assume a cascade stagger angle of zero (with the x-axis aligned with the chord) and a gap-to-chord ratio of 4/c =1. The
mean flow Mach number M), gust frequency @, gust amplitude A and chordwise wavenumber & are the same as in the previous
problem. But for the cascade problem take ky =rmand k,=0.

The appropriate physical scales are also the same as problem 2 as is the governing equation and boundary conditions. Naturally,
the impermeability condition now applies to the entire cascade.

For this problem, determine the amplitude of upstream-radiated rms acoustic pressure as a function of the sweep angle at the
specified frequency. Specifically, show the variations of rms acoustic pressure amplitude at the upstream location (—5c, 0, €/2) for
sweep angle o in the range (0.0°, 30.0°). Use sweep angle increments no larger than 2.5°. Express the results in dB using the rms
pressure value for oo = 0.0° as the reference level. The appropriate FORTRAN output statement should read “WRITE ({UNIT, *)

0%, 20102, Py (VP11 (0D

k= VK2 + k2

~ Impermeable
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These problems are simple representations of rotor wake/stator interaction in axial flow fans. They include much of the blade row

scattering/spinning mode propagation physics of the real problem but are still in the realm of Green’s function/panel methods, so
that results can be checked. They are problems that anyone developing a CFD/CAA code for fans might do for code checkout and
should be doable with several codes in existence today. The vane/blade ratio of 3/2 will make the problems easier for codes based
on periodic boundary conditions.

The first cases are for excitation that is nearly 2D (constant along the span). Then, the problem is made progressively more
3-dimensional by varying the phase of the excitation along the span. This simulates the situation (typical of turbofans) where more
than one wake from the rotor intersects a vane at the same time. A high hub/tip ratio case has been added for a check against 2D (S.N.
Smith) theory.

3D results will be checked by comparison with one or more well known panel methods. In particular, Professor M. Namba from
Kyushu University in Japan and Dr. J.B.H.M. Schulten from the National Aerospace Laboratory NLR in the Netherlands will be
asked to provide results from their lifting surface codes.

B=16
V=24
h/R=0.5 r
(gap/chord)jp = 1.0 ! —~—X=b
M=0.5 R /

Mean Flow and Geometry

Assume standard day conditions for speed of sound @, and pressure p, and uniform axial flow at M= 0.5. The duct is infinite in
both directions with constant outer radius R (which need not enter the calculations) and hub/tip ratio 4/R. The stator consists of
constant chord, zero thickness vanes with chords parallel to the fan axis. (If zero thickness causes problems, use 10t standard cascade
airfoils with camber removed. Ordinate information is provided on the CD.) Gap/chord = 1.0 at the tip. Blade/vane counts are B =
16 and V = 24. The duct and the 24 vanes are the only surfaces.

Wake Representation

In the x, r, ¢ coordinate system, excitation for the problem is a convected wave of radial vorticity representing a harmonic rotor wake.

It produces a velocity perturbation in the () direction given by (the real part of)

Wi 0.5,y = Uy Ve MU0 -] N

n=0

U is the axial flow speed a,M  and € is the rotor (and wake) angular velocity. Consider only the blade passing frequency (BPF)
fundamental, n = 1, with upwash amplitude equal to 0.1 radian, V, = 0.1. Reduced frequency
Wh/U = nB Qb/U is constant over the span. The function giving the radial dependence is
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2nqg r—h

= ko

2)

O(R) = —2Tg/B is the phase shift along the stator span. For g = 0, the excitation is in phase from root to tip of the stator. When ¢
=2, there are 2 wakes intersecting each stator vane, on average. The minus sign leading (2) causes the wake at the stator root to lead
that at the tip as in typical fan designs. In the convention of (1), the inter-vane phase angle is 27TnB/V (counting vanes in the direction
of rotor rotation).

Cases for Computation

Some participants may want to test their codes in a narrow annulus mode first for comparison with the Smith code before moving
on to the 3D cases. Results from the Smith code are available on the CD. The appendix provides background from standard fan noise
theory (Tyler-Sofrin) that was used to determine the 3D cases.

Narrow Annulus
To approximate 2D, run hub/tip ratio /R = 0.98 and no radial variation, O(r) = 0. In this case the cutoff ratio of the response waves
is given by
_nB My
m B

where m = nB — kV is their spinning mode order and [32 =1- M)% .Run a BPF (n = 1) series around cuton plus two cases well above

g 3

cuton as follows

& M Comments

0.9 0.3897 cut off (sub-resonant
1.0 0.4330 resonant

1.1 0.4763 m = -8 is cut on

1.5 0.6495 m = -8 is cut on

The chord-based reduced gust frequency Wb/U = nBL2 b/(aOZVD = nBQR/(aOZVDb/R = (2TtnB/V)(M /M) where V = 24 is the vane
count. The duct radius-based acoustic reduced frequency WR/ay = nBM .

To present results, give the complex coefficients A , which are defined by the expression for the pressure perturbation

PO = py Y Ay (e "OTE) @)
k=—cc
Do this for axial locations one chord upstream and one chord downstream of the stator (x = —b and +2b) and present results by
filling in the following table with complex values of A, .

M, Upstream Waves, x = —b Downstream Waves, x = +b
m=40m=16m=-8 m=-32] m=40 [ m=16 | m=-8 | m=-32

0.3897

0.4330

0.4763

0.6495
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Full Annulus

These are all for #/R = 0.5. The first series is for zero radial phase variation and has the same cutoff ratios as the narrow annulus
case above. They pass through cuton via increases in rotor speed.

q|& My

0 | 09 | 0470
0|10 | 0522
0| 1.1 | 0574
0| 15| 0783

The second series starts with the & = 1.5 case above and progresses through cutoff by increasing the phase variation of the
excitation along the radius. This represents the sweep of a rotor wake.

q |E@u=q|M;

0 1.50 0.783
0.5 0.783
1.0 | 1.05 0.783
1.5 0.783
2.0 |1 0.83 0.783
2.5 0.783
3.0 1 0.65 0.783

The middle column is the cutoff ratio of the acoustic mode with the same number of radial zero crossings as the excitation wave.

Present results as the complex coefficients A which are defined by the pressure field modal expansion

nm’
pn(r, ¢’ X t) =Po z 2 Anmu (x)"l"mp(l’)ei(mq)_nBQt) (5)
k=—oc0 p,:()

where ‘Pm (r) is the radial mode shape (discussed below) and, again, m = nB — kV. Do this for axial locations one chord upstream
and one chord downstream of the stator (x = —b and +2b). Present results in modal form by filling in tables like the following for
each condition run.

Radial mode order L Upstream Waves, x = -b Downstream Waves, x = +b

m=40| m=16| m=-8 | m=-32 | m=40 [ m=16 | m=-8 | m=-32

RN HOSH I O3 E o N

For participants wishing to minimize the number of cases to run, the highest priority should be the g =0 and g =2 cases at M= 0.783
shown above in bold type.

The mode amplitudes will depend on the convention used for the radial mode shapes ‘Pm (r). These are the duct eigenmodes
described by Tyler and Sofrin. However, for easy comparison with 2D results, a different normalization is used. The extreme value
of each mode is set to +1. The FORTRAN routine that allows Fourier analysis of the pressure perturbation in a constant x-plane to

determine the complex mode amplitudes Anmuis available on the CD.
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Appendix—Background from Spinning Mode Theory

In the traditional treatment of acoustic waves in annular ducts with uniform axial flow, the pressure disturbance at the n™ harmonic
of blade passing frequency can be expressed in the following modal form

(Y X +mO—nB )

Par 050 =0 3 3 Auy ¥ (1)e ®)
ko u

where the circumferential order of the spinning mode order is
m=nB—-kV (7

€2 is the angular speed of the rotor and ‘Pm (r) are the radial mode functions, which are combinations of Bessel functions. From
the form of the exponential in (6), it can be deduced that the spin Mach number of the mode at the outer wall is

nB
Mg=—Mr (3
m

where M= (QR/aO) is the rotor tip rotational Mach number. Since cuton is determined by the mode spin speed, we must identify
the most cut on mode. The following table, for n = 1 (BPF)

k m | nB/m
-1 40 | 0.40
0 16 1.00
1 -8 |-2.00
2 | =32 [-0.50

shows that the fastest mode is the fundamental interaction mode m =B - V. This is an 8 lobe pattern rotating in the direction opposite
the rotor at twice the rotor speed.

The cutoff ratio is the ratio of the rpm to the cuton rpm. This is given by

_nB My
m BM,,

g (€)]

which is also the ratio of the mode spin speed to the spin speed BM * , at which the mode cuts on. M* =k’C mu/m can be computed
by looking up kK’OC i in the Tyler-Sofrin paper. The correction for axial Mach number is [32 =1- M)% . Note that M*, =1.0 for 2D

cases. The required information for our situation at BPF with an m = -8 mode in a duct with 0.5 hub/tip ratio and 0.5 axial Mach
number is

Mx | BmE, | ME,

m

1.725 | 1.494 | 0.747
2.168 | 1.877 |[0.939

u
0]1.205] 1.043 |0.522
1
2
312767 | 2396 |1.198

where M* . is the rotor tip Mach number for cuton of the -8,lL mode.
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An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the
shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The governing equations are
given by

B Lt Gt ot Gor v B =0
I
% +U(y) % + yP% +YP aa‘;, =A exp[—B(ln 2)(x2 + yz)] cos(mt)

and the mean flow variables are given by

h 2
U =U.+(U; - Um)exp|:—(ln 2)(% _Z) } y2h

=U; 0<y<h
I 2 VO o L (Um-un) 1 (U -Uw)
w2 VO UV (U -v)  pe (U-U)

The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary
condition along the x-axis.

The length scale is given by the half-velocity distance R, ,. The velocity is scaled by the jet velocity Uj, the density by P the
pressure by p ; U2, and the time and frequency by R 1! UJ The constants are given as: P = 101330 (kg/m s2), R = 286.8875 (m%/s2K),
U= 517.4569 (m/s), T;= 166.6667 (K), U =0, T, =300 (K), M;=2,T/T,=1,Y=14R;p=h+b=1(m),h= 0.6 (m), b=
0.4 (m), A =0.001 (kg/ms3), and B = 8 (1/m?). Calculations are to be made at frequencies with St = 2fR ,/ U] =0.14 and 0.6. The
physical domain is -5 < x/R, , < 50 and 0 < y/R, ,, < 10.

NASA/CP—2000-209790 21



Benchmark Problems—Category 5

Calculate 17 along the outer boundary at 101 evenly spaced points along the line y/R, , = 10 over 0 <x/R, n <50and at 16

evenly spaced points along the line x/R,, = 50 over 2 < y/R , < 9.5. Also, calculate p' at 101 evenly spaced points along the

line y /R , =1 over 0 <x/R , < 50 at the start of a cycle. Output x/R, , y/R, ,, p’2 orp'in FORMAT (3(2X,1P,E14.5)).

Specify the computer used, the total CPU time, the time step size, the total number of time steps, and the total number of grid
points.

-
=Y

[
Source
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Calculate the frequencies and the sound pressure level in dB of the tones at the center of the left wall associated with the flow of
airover adoor gap cavity. Data exists for the geometry and velocities shown in Figure 1. Itis known experimentally that two edgetone
frequencies occur between 0 Hz and 2000 Hz and frequencies associated with longitudinal cavity modes occur between 2000 Hz
and 4000 Hz. The boundary layer is turbulent. The boundary layer thickness at the mouth of the cavity is 1.6 cm for U = 26.8 m/s
and 2.2 cm for U = 50.9 m/s. For simplicity, you may use the one-seventh power-law velocity profile given by

1
| (2)7
Uy 8)
where 0 is the boundary layer thickness. You may do one or both cases.

Uo

4—0O

o3}

Figure 1.
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PROPAGATION OF SOUND THROUGH A TRANSONIC NOZZLE
CATEGORY 1: PROBLEM 1, ANALYTICAL SOLUTION

CHRISTOPHER K.W. TAM
Department of Mathematics
Florida State University
Tallahassee, FL 323064510

Email: tam@math.fsu.edu

Introduction

There are two primary objectives in formulating this benchmark problem. First, most aeroacoustics
problems have multiple-length scales. This problem is designed to test the workshop participants’
ability to deal with this type of problems computationally. When sound waves propagate against
a flow, their wavelengths decrease as they enter into regions with higher and higher subsonic Mach
number. In this problem, the Mach number at the nozzle throat reaches a value of 0.94. A simple
estimate shows that there is a reduction of acoustic wavelength by a factor of about 10 in propagating

through the nozzle throat.

The second objective of this problem is to test the formulation and implementation of numerical
boundary conditions. In this problem, there is an incoming sound wave from the downstream side
of the nozzle. Because of the constriction imposed by the nozzle throat, a part of the wave train
is reflected back. The remaining part propagates through and exits the upstream end of the nozzle
as the transmitted wave. Since the computation domain is specified to be from =z = —10 to +10, a
radiation boundary condition is needed at the upstream end of the nozzle. At the downstream end of
the computation domain an inhomogeneous outflow boundary condition is required. The boundary
condition must generate the incoming acoustic wave and at the same time allow the reflected acoustic

wave and entropy wave to exit without reflection.

Without solving the problem, the nature of the solution can be easily established by simple physical
reasonings. The problem asks one to find the maximum pressure envelope. Upstream of the nozzle
throat, essentially there is only the transmitted acoustic wave. So the maximum pressure envelope
should be a constant. At the throat, the nozzle area is the smallest and the propagation speed is the
slowest. By conservation of acoustic wave energy flux, the sound pressure level must be the highest.
One expects a sharp peak at the nozzle throat. Downstream of the throat, there is an upstream

propagating acoustic wave as well as a downstream propagating reflected wave. The two wave trains

NASA/CP—2000-209790 27



form an interference pattern. Let the maximum pressure level of the upstream propagating wave be
A and that of the reflected wave be B. Then the maximum and minimum level of the interference
pattern is approximately A + B and A — B, respectively. The average is A, which must be equal to

the maximum amplitude of the incoming wave. This is prescribed by the problem as ¢.

Exact Solution

The governing equations are the quasi-one-dimensional continuity, momentum and energy equations,

dp , 1 0(pud)

o A ar (1)
ou ou dp
dp | O(pud) o OwA)
Agrt —ar T g =0 (8)

where v = 1.4 and A(«), the nozzle area, is given. The time independent mean flow solution of (1),
(2) and (3), denoted by an overbar, is

puA=pruA, (4)
p Pr

7 )
w9y p up 7P

- S o Gt S _ . rr 6
2+’y—1pzp 2+’7—1,0r (6)

where subscript r denotes physical quantities in the reference station. In this case, we use the Mach

0.4 uniform region as the reference station. Thus p, = 1, u, = 0.4, p, = % and A, = 0.536572.

The acoustic disturbances in the nozzle are very small. A linear analysis will suffice. The linearized

forms of equations (1) to (3) are,

dp pudA _Ou dp u dA du _0p

at ad Pt et A e e 7Y (7)
_Ju __ Ou _du _ du Op

Par TP gt g TP T gy = ®)
Jop _Op dp ~v ,_ _dA _Ou du

ot F s T ha t AP PG F Pt awgs =0 Q
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Interest is on time periodic solution of frequency w. Let the solution be of the form,

P 4
= Re u(x) emwt (10)

=W R

On substitution of (10) into (7) to (9), the governing equations for the amplitude functions (p, u, p)
may be found. They are,

_dp  _du . 1(_A+_A)dA dp _du

Yy TPy TP T AT G T e T P
du dp du du

T + L —iupn-pus —pa sl (11)
r  dx x x

_dﬁ_l__dﬁ_ . ..dp ’y(_A_I_A_)dA _du

TPy Ty TP T gy T AT P TP g,

In the uniform regions upstream and downstream of the nozzle throat, equations (11) reduce to a
system of equations with constant coefficients. Three exact solutions are easily found. They are the

upstream propagating acoustic wave, with solution in the form,

L | e (12)

RSy =)o)
|

P a
p 1

and the entropy wave, which is convected downstream by the mean flow,

P .
ul =105 (14)
P 0

There is no simple analytical solution to equation (11). To find a numerical solution to the benchmark
problem, one may integrate (11) numerically using the Runge-Kutta or similar method. Suppose (11)

is integrated numerically from # = 10 to # = —10 using (12) as the starting solution. Let us label
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this solution as the incoming wave solution. Again, integrate (11) from = = 10 to @ = —10 using
(13) and (14) as the starting solutions. We will call these two solutions as the reflected wave and the
entropy wave solution. The amplitude of the incoming wave solution is ¢ as given by the benchmark
problem. The amplitude of the reflected wave and the entropy wave are unknown. At + = —10 and

further upstream there is only one upstream propagating acoustic wave given by (12). This is the

transmitted wave. Now, the solutions at * = —10 must match. This yields,
P P P P
el u +ce | +ege | U =c3c | U (15)
p incoming P ] reflected p entropy P | transmitted

For the benchmark problem, we find ¢; = —0.01615 — 0.116361, ¢z = 0.0, ¢3 = 0.49037 + 0.24309:. In
other words, there is negligible amount of entropy wave. Also about 10% of the incoming acoustic
wave energy 1is reflected back by the nozzle throat. The maximum pressure envelope is shown in

figures 1 and 2.
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Figure 1. Maximum pressure envelope along the transonic nozzle
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Figure 2. Maximum pressure envelope near the nozzle throat
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Solution of Category 1 Problem 2

RAY HIXON
CAA Group, ICOMP
NASA Glenn Research Center
Cleveland, OH 44135
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In Category 1, the problems are solved using the quasi-1-D Euler equations, given in the con-
served variables as:

0.0 O O O 0
gr0.0 2 B.red MO "
! 1dA _
DP O gPuU+pP g Adxg PU 7
0OE § DuE+p g Ou(E+ p) O

The nozzle is the same for both problems, extending from -10<x<10 with the distribution:

2
0.536572- 0.198086( M2 00" 3 5 g

2
1.0- 0.661514 ("D*/09

A(X) = (2)

I

x<0

The problem to be solved is the downstream propagation of an acoustic wave through a shock
wave in a convergent-divergent nozzle. The mean flow is set as:

0= [ 0 1 0
OoP g 0 0
Oo O = 0 0.20065330 (3)
O_ 0 0 0
O P qnflow O 1/V 0
and
Poutflow =0-6071752 (4)

The acoustic wave is set at the upstream boundary as:
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a° o 910 X
_ : inflow 0
Sl Ry P R PV, o
% o % El E Bn (1+Mipgon) IV
nflow

The variables are linearized about a steady mean flow:

i wt

p=ptpe
u=u+te (6)
p = p+ e

The mean flow is given as a function of the local Mach number as:

nlnp
o —1)_on ¥-18
p = pO%I‘-i_(yZ )M E
1
L —-1)—2M 2
¢ = e+ Lo Dw (7)
pc”
P
og==ctM
The mean flow is marched in space using:
v (Y -1 madA
d— M%H 2 M Cdx
&M = _2 (8)
A(M® -1)
The characteristic waves are defined as:
Ay = p-c
A, = p-pcl 9)
A; = p+pcl

where A is the entropy wave, Ais the upstream-running acoustic wave, anglig\the down-
stream-running acoustic wave.

These waves are marched in space using the equations:
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(Y—=1)=2 O
dn, Oo1+H5=M ym U
dx E oM +1—M2EA1
0 O
[ M2dA O
d O 7 dx [
OI_A2 _L dx__ Gy (10)
X B( 1)%(M +1)AD
%w 1+ D2 (-2+2M —-(3+y)M +(1+3V)M3)dAD
> dx
+ [ — + — 2, _ LA,
C Co(M —1) 4M —1)°(M +1)A .
_(y =1 20Ag
=M S
+ 0 — ) (A3
O 2(M-1)°A O
0 U
B MZdA O
dA, O dx A
& Owm +1)2(M —1)AD
H i
_(y=1) 20A
+E'§l > M i

— DA,
2(M +1)°A ]

I o [
€
o
+

VoU@?  (2-2M—(3+y)MP~(1+ 3y) MDY
+ _2 + deA
Co(M +1) 4M +1)°(M —1)A -

For marching in space, the 5-6 optimized fourth-order nonlinear Runge-Kutta method of Stanescu
and Habashi is used (ref. 1)

In this calculation, there are three regions to be solved: (1) upstream of the sonic point, (2)
between the sonic point and the shock, and (3) downstream of the shock. These regions are illus-
trated in Figure 1.

Reagion 1: Upstream of the Sonic Point

In this region, the solution is marched upstream from the sonic point to the upstream boundary. At
the sonic point, the equation for the Mach number changes to:
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(11)

Since the flow goes from subsonic to supersonic at the sonic point, the positive value is used.

There can be no perturbation of the Mach number at the sonic point; thus:

__2 0 B=Y), O
AZM:1_V+1D_A1+ 2 A3|:|
The perturbation equations at the sonic point are:
2
Gy4A E
dA; ] dx? Eﬁ
T = 1
&g 2advg
o &g
O 2 O
o 94 0
u dx’ u
O O
dA 0 dA d o 2ASM [
&2 — |:_}_‘d_:l. + (3;y)_XA3 BE dx 5 0 (12)
M=1 |:| X M=1 M = 1|:D d |:|
5 o O
B]H (v;l) d)é _%
0 ZA&MD
2
OdA [
0~ 2 O
d dx
S = Ay A
M=1 AA—MO
o 9 g

Initially, the A; wave is set to zero at the sonic point and thevave is set to one. After marching
upstream, the amplitude and phase of themave at the sonic point is set such that the value at
the upstream boundary matches that of thevave imposed at the inflow boundary and the solu-
tion is then calculated.
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Region 2: From the sonic point to the shock

Once the conditions at the sonic point are known, the solution can be marched directly to the
shock location. Note that the second derivative of the area is discontinuous at the sonic point;
thus, the correct value changes depending on the marching direction.

Reagion 3: From the shock to thewnstream boundary

At the shock itself, there are four specified quantities and three unknowns. The four specified
waves are the three upstream wavesg @y, and Ag) and the upstream-running acoustic wave A

from downstream of the shock. The three unknowns are the entropy and downstream-running
acoustic waves Aand A; behind the shock, and the velocity of the shock itself, V (ref. 2)

At the shock, mass, momentum, and energy must be conserved. The equations at the shock itself
are thus:

M<1 M<1

e A — A,
- A, -— A

_>,A\3 —>A3

Figure 1: Three Solution Zones of Category 1 Problem 2
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Figure 2: Mean Pressure Solution
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Figure 3: Perturbation Pressure Solution at the Start of a Cycle
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Figure 4: Perturbation Pressure Solution through a Cycle at Exit Plane

M +1 .
_333(A1)3 0 2_ EFAZ)3 s EFAg)g—p3 = (13)
M
- 2(A1)2 EFAZ)Z %As)z P2V
_ Mz —1)°0 M. +1)20 )
_M'~2’>(A1)3+ E(ST)g(Az)g"' %%)E(Ag)s—zm)%v = (14)

_ 2 — 2
5 M, —1)“0 M, +1)°0 .
~M3(A), + %2—5(A2)2 + gz—[(A3)2—2p2u2V

1
pg(v 5.y —D)\ s~ g\ﬂzz %A2)3 Dz- EFA3)3

pz(v 5,0y T ngzﬁ B(Az)Z Dz— E(A3)2

(15)

where the subscript ‘2’ refers to zone 2, upstream of the shock; the subscript ‘3’ refers to zone 3,
downstream of the shock.

In zone 3, the upstream-running acoustic wave must be set. Since it is known that there is no

upstream-running wave from the downstream boundary, the wave is set such that the amplitude is
zero at the downstream boundary.
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ROTOR NOISE: CATEGORY 2
ANALYTICAL SOLUTION
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Introduction

The sound field of an open rotor and that of a ducted rotor can be extremely different. This provides
a good example to illustrate the important aeroacoustics principle that the environment, an acoustic
source is in, often exerts decisive influence on the acoustic radiation from the source. This is especially

important to fan and turbomachinery noise.

A body moving at a constant subsonic velocity will not generate sound. On the other hand, a body
undergoing acceleration or deceleration will. In the case of an open rotor, although the force exerted
by the blades on the fluid is moving with constant speed yet, because of rotation, there is radial

acceleration. One, therefore, expects strong acoustic radiation in and around the plane of rotation.

When the rotor is housed inside a circular duct, acoustic disturbances are continuously reflected back
by the walls. This causes cancellations and reinforcements. The net result is that it is possible to
have complete cancellation resulting in no acoustic radiation. This is the case even when the blade
tip speed is slightly supersonic. The numerical values of the benchmark problem have been chosen so
that the ducted rotor effectively has no sound radiation. However, if the rotational speed increases
further, there will be sound radiation from the open end of the duct. This is the cut-off phenomenon
(see Ref. [1]). Exact solution of the radiation problem from the open end of a long duct can be found
by the Wiener-Hopf technique and is well described in Ref. [2].

To compute the radiated sound from the open rotor, one should be aware of the difference in scales
between the noise source and the sound field. The source length scale is determined by the geometry
and loading of the blades. The length scales of the acoustic field is determined by the acoustic wave
length, which, in turn, is determined by the rotational frequency and the number of blades of the
rotor (the blade passage frequency). Appropriate spatial resolution must be used in the source region

and in the acoustic field to ensure an accurate and efficient numerical solution.
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Analytical Solution

The governing equations to be solved are,

9v. _ _9p

ot Or

dw _ im = —imQt

wr ——Tp+F¢(r,:1;)e

ou op o
_u — __p n —imt

5% = a + Fy(r,a)e

%5 la(ﬁr) imw @_
ot r Or + r +8x_

The time period solution must have the same time dependence as the sources. Let

0.

u u(r, x)

v — @\(r,x) e—imQt (2)
w w(r,x) '

p plr,x)

Substitution of (2) into (1) leads to a problem in the x — r-plane. The equations to be solved are,

95
—mQv = —a—f
—imw = —@ﬁ—l—ﬁqg
r
. 3)
—imQu = _9p —I—ﬁx
or
. . ~
Cim0p+ il Gy M 9T
r or r ox

Solution to (3) satisfying the radiation boundary condition may be found by the method of Fourier
transform. Let the Fourier transform of f(x) be f(k). f(z) and f(k) are related by

P = o [ s e g0 = [ Fogetar, (4)

Upon taking the Fourier transform of (3), it is straightforward to obtain, after eliminating all the

other variables, a single equation for p,
2

5 1dp 2 ; i — Too0m D)
—p—|———p—|—(m292—k2)z_?—m—]_?: ﬁ(m) € a )(m—|—k)Jm(/\mNT), TS ]_ (5)
dr? r dr r2 0 r>1

=
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For r > 1, the solution of (5), which satisfies the radiation condition at r — oo, is
P = AR ik —m?Q%)%r) (6)

where H,(T})( ) is the m order Hankel function of the first kind. The branch cuts of the square
root function (k? — m292)§ are taken to be Re(k? — m292)§ > 0, if Re(k? — ngz)% = 0 take
Im(k? — mzﬁz)% < 0. The branch cuts are shown in figure 1.

Im(K)
k-contour { ma  Rek)
o~ X -9
‘mo ks= mQ cos6

Figure 1. Branch cuts of (k2 — m?Q?)2 in the k—plane

For r < 1, the solution of (5) consists of a particular solution and a homogeneous solution. The

solution that is bounded at r = 0 may be written as,

p = B(k)J(i(k* — m*Q?)%7) =T o (Anr) (7)

7 < s >% m + k
27 \1001ln2 k% + /\an — m2Q2

where J,,( ) is the m' order Bessel function.

Now the solution of (5) and its derivative must be continuous at » = 1. By imposing these continuity

conditions on (6) and (7), the unknown A(k) and B(k) are found. This gives,

TN ) T (i(E2 — m?Q%)2)  (8)

7 T 5 __ k2 (k2 —mzﬁz)%(m—l—k)
A(k) = — 100(In 2)
() =3 <1001n2> ‘ (B2 — A2 —m20?)
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_ dJn(2)
where J! (2) = e

By inverting the Fourier transform p, the pressure in the far field r — oo is obtained,

p(r,x,t) = e”m / A(k)H,(T})(i(kz — mzﬁz)%r)eikxdk. (9)

For large r, we may replace the Hankel function by its asymptotic form; i.e.,

. 7 2 % 2 202 1 N ST N
p(T,l‘,t) ~ e—zmQt / A(k) ( : . ) 6_(k —m=Q )2r+zkx—17—zzdk‘ (10)
r—co mi(k? —m2Q2%)2r

Let us now switch to a spherical polar coordinate system (R, 6, ¢) with the z-axis as the polar axis.
On noting that
x = Rcosf, r=Rsind

(10) may be written as,

oo

g0y ~ e [ ( )
R—o0 im(k? —m?2Q?)z2 Rsin 6 (1)

. e—[(k2_m2Q2)% sin §—ik cos O]R—%(m—l—%)ﬂ'dk

The k integral of (11) can be evaluated asymptotically by the method of stationary phase. The
stationary phase point is at ks = mfQcosf. A straightforward implementation of the method of

stationary phase yields the following expression for the acoustic pressure field.

2 4 ;
p(§,9,t) ~ EA(ks)e’mQ(R_t)_a(m-l-l)ﬁ (12)
— 00
where
1 7 3 m?(1 4+ Qcos#)Qsin b . _m202cos20
Alks) = Jm (A J’ R 0 100(In2) | 13
( ) 4 <1001n2> /\?nN_mZQQ Sin29 ( N) m(m S111 )6 ( )

The directivity, D(0), is given by
D(8) = lim R*p? =2A4%(k,). (14)
R—o0

The directivities for the two cases = 0.85 and 1.15 are shown in figures (2) and (3).
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Category 3, Problem 1

Single Airfoil Gust Response Problem

James R. Scott
NASA Glenn Research Center at Lewis Field
Cleveland, Ohio

The solution to this problem can be obtained by solving the linearized unsteady Euler
equations. Let the unsteady flow field be given by

Ui, t) = Uy(Z) + (7, t) (1)
p(Z,t) = po(F) + p' (7, 1) (2)
(@) (3)

7,t) (4)

where the entropy sg is constant, and #, p’, p’, and s’ are the unsteady perturbation
velocity, pressure, density and entropy, respectively. Zero subscripts denote mean flow
quantities which are assumed to be known.

Substituting (1) — (4) into the nonlinear Euler equations and neglecting products of
small quantities, one obtains the linearized equations

Dyp’ N 13 > o\
+p'V-Up+ V- (potl) = 0 (5)
Dt
Dou  _ == T T =/
pO(D—t+U'VUO)+pUO'VUO = —Vp (6)
D()S,
=0 7
Dt ) ( )
where % = % + [70 .V is the convective derivative associated with the mean flow.

If the mean velocity Uy can be expressed as the gradient of a potential @y, then
equations (5) - (7) can be reduced to a single, non-constant coefficient, inhomogeneous
convective wave equation [1,2]

Do
Dt

1 Do

S S 1 =
= Hoo . R v SN0
% Dt V- (poV9) V- (pod'™), (8)

Po

( 1
0

)= 5

where the unsteady velocity is decomposed into a known vortical component @) and an
unknown potential component Vo,

iz, t) = @ + V. (9)
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The unsteady pressure is given by

o= —Po(f)ﬁ- (10)

An unsteady aerodynamic code, called GUST3D [3], has been developed to solve equa-
tion (8) for flows with periodic vortical disturbances. The code uses a frequency-domain
approach with second-order central differences and a Sommerfeld radiation condition in
the far field. It has been extensively validated on model problems with analytical solutions.

GUST3D requires as input certain mean flow quantities which are calculated sepa-
rately by a potential flow solver. This solver calculates the mean flow using a Gothert’s
Rule approximation [3]. On the airfoil surface, it uses the solution calculated by the poten-
tial code FLO36 [4]. Figure 1 shows the mean pressure along the airfoil surface for Cases
1 and 2.

To calculate the unsteady pressure, GUST3D was run on systematically refined grids
to obtain a converged solution at each frequency. It was found that 24 points per wave-
length was sufficient for convergence. The location of the outer grid boundary was also
varied to check for sensitivity to the far-field boundary condition.

Flat plate results were calculated using the above approach to help assess accuracy.
Figure 2 shows the calculated RMS pressure versus analytical results for a flat plate in
a transverse gust. Two numerical solutions are shown per frequency, each corresponding
to grids with different far-field boundaries. The far-field boundary locations are shown in
number of chord lengths on each figure. The maximum error for each case is also shown
(omitting the first 1% of chord near the leading edge singularity). The acoustic intensity
was calculated using a single-layer-potential Kirchoff method [5]. Kirchoff circles with
radii of 2, 2.25, and 2.5 chord lengths were used to propagate the pressure to the circle of
radius 4.0. The three Kirchoff calculations for each of the two different far-field boundary
locations resulted in six different intensity calculations for each frequency. Figure 3 presents
the most accurate and least accurate of the six calculations to give some indication of the
numerical uncertainty of the results.

The Joukowski airfoil results for Cases 1 and 2 were calculated in the same manner
as the flat plate results. Figure 4 presents the RMS pressures and Figure 5 shows the
corresponding intensity results. The relative numerical uncertainty of each calculation
is also shown. For the RMS pressures, this uncertainty determination did not include
pressure values in the first %% of airfoil chord near the leading edge nor the last %% of
airfoil chord near the trailing edge. Note that there are no RMS results for Case 2, k1 =
3.0, and no intensity results at this frequency for either Case 1 or Case 2. Work is still
ongoing to obtain an acceptably converged solution for these cases.
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Figure 3.c Acoustic intensity for a flat plate. M=0.5, k1=3.0
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Figure 4.b RMS pressure on airfoil surface, Case 1, k1=k2=1.0
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Figure 4.d RMS pressure on airfoil surface, Case 2, k1=k2=0.1
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ANALYTICAL SOLUTION OF THE CATEGORY 3,
BENCHMARK PROBLEMS 2 AND 3

EDMANE ENVIA
NASA Glenn Research Center
Cleveland, Ohio

Solution of Problem 2
The solution to this problem is most conveniently obtained by introducing an acoustic velocity potential and

eliminating all primitive variables from the governing equations. The end result is the convected wave
equation for the acoustic velocity potential ¢,

2
(Vz—agz 50 J¢:O’ Dy_9,y9 (1)

Dt ot ’ox

with (u,v,w)=V¢, p=—p,(D,¢/Dt) and p = p/a; . The corresponding boundary conditions in terms of
¢ are given by

8_¢ _ Aei(kxx+ky y+k.z-o 1) o
ay y=0, 0<x—ztano<c
)., 3)
dz 0.0

y=0"
Dy¢ 0 o
Dt =t

X—ztano>c

Egs. (2) and (3) enforce the impermeability of the airfoil and bounding walls, while Eq. (4) stipulates the
continuity of pressure downstream of the airfoil trailing edge. Since ¢ is an odd function of y,

¢(x,0,z,4)=0 upstream of the airfoil. Finally, since we have used an exponential representation for the

incident gust and, therefore, only the real part of the final solution is implied.

The analysis outlined here will follow closely that presented in ref. 1. For a convected gust k. =@/U . The
Sommerfeld radiation condition is enforced indirectly by assuming that k& has a small positive imaginary
part which is set to zero at the end of the analysis. Introduction of a reduced velocity potential via
0 :Q; e—i(kxsz/ﬁzﬂut)

system

, the Prandtl-Glauert transformation x"=x/f, and the non-orthogonal coordinate

E=x"cosa’—zsina’, { =z, tana’=tana/p 5)
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leads to

9 o 3?9 KM
=2 i =0
d&” o 98¢’ B
8_(]5 ] _ Aei[m’;+(ylr<+kz %]
ay y=0, 0<E<y,¢

a_¢_Y18_¢ =0
d¢ 9 ) o,

Y, =sina, y,=cosa’, K=k,/By,, c'=c/p

A Fourier transform in & reduces these equations to

2 2 2 2
az+2iylxli+a—2+k"]‘;[ -1 |@=0
J4 of B

foL)} } _ iAei(le+kz % (1 _ eiyz (A+x)c )
y=0, 0<E<y,c’

ES 2m (A+k)

o),

0P
— +iy, AP =0
[a‘? | l

Separation of variables in y and { yields

O(L3)= XMWY (0)Z,)

Y, (v)=sgn(y) e™ Mo b, W,,=\/K2M2 -n’m’ly;

Z,()=e""" cos(nrl /1)
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©)

(10)

(1)

(12)

(13)

(14)

(15)

(16)

17)



A proper choice of the branch cuts for \/A> —w’ will ensure outgoing waves at infinity. It is advantageous

to use the linear nature of the governing equation and the boundary conditions and introduce
O =@, +P, +--- where ®,’s represent successive terms in a leading-edge/trailing-edge expansion strategy

(see ref. 2). The resulting problems for individual ®,’s are then easier to solve.

Leading-Edge Problem: ®,
Ignoring the trailing edge allows for the chord to be extended to downstream infinity. Substituting for @,
from Eq. (15) in Eq. (12), and applying the orthogonality condition

¢ 0 if nzk
J.Zn (C)Z; (§)dE =3¢/2 if n=k#0 (18)
0 ¢ if n=k=0

yields

2 2 + - Agnfn()’)
—Y,\JA—w, C (A)=D; (A)+—"—""— 19
7/2 Wn ln( ) ln( )+\/E(/I+K') ( )

[ o] (1) e 1]

E,(A)=i|e™ cos(nnl /1) df =————— (20)
) (19 -n'r )
2/¢ if n=20
= O=v (A+K)+k 21
" {w it =0’ h(A)+k D

where C; and D,  denote the unknown functions _[:CI)1 (2,0,§)Z,(§)d;  and

J:E)(I)l (2,0, Yoy Z,” (£ )d{ , respectively. The superscripts + and — denote the regions of analyticity of

the functions defined according to

F* (A):ﬁff(&)l{(i&)e’“dg (22)

where H is the unit step function. It should be noted that for the leading-edge problem it is not necessary to
enforce Eq. (13). The region of analyticity of C; is dictated by the requirement that the solution be an odd
function of y.

If the terms in Eq. (19) behaved algebraically at infinity (i.e.,

/l| — o), Liouville’s theorem could be used to

establish the most general function satisfying this equation. However, since C;, D, and Z, do not behave
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algebraically at infinity (see ref. 1), Liouville’s theorem does not apply. But, as it turns out, the asymptotic
structure of C; and D, is similar to that of Z . Thus, if it were assumed that both of these functions
contained Z as a factor, and that their non-algebraic behavior was entirely due to it, then factoring out Z,

would make Eq. (19) amenable to the application of Liouville’s theorem (see ref. 1 for a discussion of the
implications of this assumption). The solution of Eq. (19) is then given by

C+ (l) _ iAgnfn (}') (23)
. YoN27 K+ w, JA+w, (A+K)
The corresponding pressure field, in the Prandtl-Glauert coordinates, is
, pU,Ae, cos(nmz/l) _i(yxm’ssor
i (¥, 7,2.t) =sgn(y)—— ( ) i)
2Bk +w,
fn(ﬂ') iyz(f/'txq-[«m -w;, ‘y‘) d)b (24)

X_ JA+wW, ¢

In the farfield, the integral can be evaluated explicitly via the method of stationary phase. The final form of
the leading-edge contribution is given by

pOUOA —i(yzxsz’+wz+7r/4
— ¢

)cos(G'/Z)

o

y Zenfn (—w, cosB’)cos(nmz/ 1) S 25)

JK+W
n=0 n
¥=yx*/B*+y*, 6’ =tan”'(By/x) (26)

Trailing-Edge Problem: @,

Having solved for the leading edge contribution, we now let the leading edge move off to upstream infinity
and introduce a new coordinate origin via x = x —c¢. Continuity of pressure downstream of the trailing edge
(i.e., Eq. (13)) stipulates that, on a per mode basis, we must have

ide, F, (—w,)e 7 [1 -G,(4) ]e”“”'

(A+K)®;, (A)=— e i, 27)
G, (1) :gnJ.erf(\/-i(/l+wn)(yl§ + j/zc’))cos2 (nm§ 10)dE (28)

0
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erf (z)= %Je du (29)
T

to ensure continuity of pressure downstream of the trailing edge. Furthermore, since it is necessary that
oD, / ay|y:0 =0 for £ <0 for Eq. (12) to remain true, we find that

@}, =, ¥ —w! | ®;, + @}, (30)
CZII(A')

Substituting the expression for @}, in Eq. (30) leads to the following Wiener-Hopf equation for the trailing
edge field

A+K)D
%:_n(,“,() A—w @

ide,Fy o) Ao [1-6,(1) |

X (31)
N2 K+ w, JA+wW,
Splitting the mixed function and solving the “plus” side of the equation yields
' id — M D pw F(NH (A
®;—n — l Snfn( wn )e X Wn n( ) n ( ) (32)

2r ik +w, (A+x)

_ —iyone’
H () =—— i dn (33)
2zi ) n+w, E,m)(n-21)
/

where the contour & does not enclose the pole at 7 = A . The appearance of Z, (1) in Eq. (32) is consistent

with the assumption stated earlier in connection with Eq. (19). The expression for C,, (A)is, therefore,

given by

ide, £, (-w,)e ™ EMH,(A)

yzx/ﬂwhc+wn JA-w, (A+K)

The corresponding trailing-edge pressure field, in Prandtl-Glauert coordinates, is given by

C,, (M) =~ (34)
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pA Ugnfn (—Wn ) e—i(yZKsz'ﬂot

x,y,z)=s
Pa, (X, 3,2) =sgn(y) Sy s

)cos(nn'z/ﬁ)

N Z (MH, () pastee )
JA-w,

dA (35)

—oo

The expression for A" (A) can be computed by closing the contour in the lower-half-plane and expanding

near the branch point at 7 =—w, . The result is

i —iy,Ac
. _ \2w, e ' B ~ S
H(A)= an(—wn)[l erf (7, A+ w, )c )] (36)

Substituting in Eq. (35) and evaluating the remaining integral using the stationary phase method we find that

pOUoA —i(yZKMZx'+wz+7r /4)
—F¢

ﬁ\/m/z’/

T (= 9/ /0 ) ,
Xz e, L, (—w, cos8)cos(nmz )[1 _erf (\/'WZW,, (1- COSGI)C,) ]el‘)’zwhr 37)
s JK+W,

Finally, the complete airfoil solution is given by

P, (7,0",z,t) = —sgn(m —0")

p(r,0’,z,t)=Re (p1 (r,6",z,t)+ p, (r,6’, z,t)) (38)

It should be noted that, in the expressions for p, and p,, only a finite number of terms in the infinite sums
contribute to the radiated field. »’s for which w, is imaginary produce evanescent waves and hence do not

contribute to the farfield radiation. The physical and geometric parameters of the benchmark problem are
such that only terms for which n <2 need be accounted for.

Finally, it is worth noting that if sweep is set to zero (i.e., & =0), Egs. (25 & 37) reduce to the well-known
solution of the 2D gust-airfoil interaction problem (see ref. 3).
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Results

The solutions corresponding to the flow and gust parameters defined in the problem statement are
summarized in the figure below. The figure shows the analytically predicted rms pressure directivities on a

circle centered at (0,0,//2) and a radius of 5¢ as computed from Eq. (38) and normalized by their

respective maximum rms pressures.
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(Note the change in scale in each figure).
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Solution of Problem 3

For the cascade problem, the governing equation and the imposed boundary conditions are the same as those
for the isolated airfoil problem except for Eq. (2), which now should read

(a_q) _ Aei(kxx+kyy_wt) } —0 (39)
ay Vg =0, Oqu —ztano<c

X,=x—qs, y,=y—qh (40)
where integer ¢ =0, £1, =2, --- indexes the airfoils in the cascade and s and % denote the cascade

stagger and spacing, respectively. For the sake of generality, the solution will be developed for non-zero
stagger. The solution to the benchmark problem can be recovered by setting s =0 in the final formula.

Owing to the linearity of the problem we envisage ¢ = z ¢(") , Where ¢(q) is the solution in the ¢" strip
P

defined by gh<y<(g+1)h. Since the incident gust in the ¢" strip is related to the gust in the 0™ strip

iq(kxs-%—kyh)

through the phase shift e , we stipulate an identical relationship between the solutions in the ¢™ and

0" strips;
(b(q) ()C, BEEE t) = (b(O) (xq > yq 5Z, t)eiq(k"HkJ’h) (41)

Therefore, once the solution in the 0" strip (i.e., q)(o)) is found, the solution everywhere can be obtained via

Eq. (41). Following the procedure established for the previous problem, we introduce a reduced velocity

. . ~  —i(kM*x/ B> . ’
potential via ¢=¢ e (kibr*xp Hw), the Prandtl-Glauert transformation x"=x/f, and the non-orthogonal

coordinate system given by Eq. (5). The phase shift in Eq. (41) when re-expressed in the non-orthogonal
coordinates is given by " where @ =y,ks"/h+k,. In view of this, we find that the solution of the wave

equation for the cascade problem (in the transformed plane) is given by

=3 > ()Y, (5,)Z &) (42)
g=—o n=0
Yq’n =sgn (y _ qh) e*}’z\//l -wy |y-qh| eiq(wh+y2/1s) (43)

where Z, and w, were defined in Egs. (16 & 17) and s'=s/f3.

Again, we take ® =®, +®, +--- and solve for leading-edge and trailing-edge responses separately. For the

cascade problem, however, we only account for the leading-edge response. This is because, at the reduced
frequencies of interest here, the trailing-edge response is quite small upstream of the leading edge (compare
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Eqgs. (25 & 37)). As a result, in the subsequent development the trailing edge is ignored and the chord is
assumed to be semi-infinite.

After a fair amount of algebraic manipulations, Eq. (39) leads to the following Wiener-Hopf equation for the
cascade

Ae,F, ()
~ K, (2)CY (A)=DY () + -l (44)
where V
‘% (2’): yz\/m i eihhm || eiq(whﬂ/z/ls')
g=—o0
sinh (yzh )
SN P s
cosh (J/zh —-w ) cos(@h +y,1s")

where the subscript “1” emphasizes that this equation holds for the leading-edge response only. The cascade
kernel function K, enforces periodicity of the cascade solution. Note that, if the term in the curly bracket is

set to unity, K, reduces to the kernel for the isolated airfoil (see Eq. 19).

Performing a multiplicative split of the kernel function into terms that are analytic in upper-half-plane (i.e.,
a “+” function) and lower-half-plane (i.e., a “—” minus function), and assuming that the entire function Z

is a common factor on both sides of Eq. (44), we find a solution for Cl(,? y given by

Ae,E, ()
V2a K (k) K (M) (A+K)

o (A)=- (46)

where

ﬁ(l _A/T,T,,-)
K ()= K, (0) e L @7)
I1 (1 - /1/0'2)

J==

%(0)= v,w, sin(y,hw, )
"N cos(y,hw, ) —cos(@h)

(48)

x(A)=7,[5(1/2+¢"/m)—(h/n)log(2sing") |4, ¢’ =tan™ (h/s) (49)

ot = (2jm—@h)y,s £A,
" (r.d)

L, =l —(jn/sh) (50)
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A, =1y, d’Y —(2jm—oh), d' ="~k -

where O',i ; and Tj, ; are the roots of the numerator and the denominator in Eq. (45). These correspond to

acoustic modes (both propagating and evanescent) generated upstream, downstream and between the plates.

The decomposition of the kernel function is achieved through the use of Weiestrass’s factor theorem which
allows for infinite product representations of the functions involved. The exponential factor y (1), derived

by analyzing the asymptotic behavior of the infinite products involved, ensures the convergence of the
infinite products at infinity (see ref. 4).

Substituting for Cl(f)+ in Eq. (42), applying an inverse Fourier transform, and reverting to the Prandtl-
Glauert coordinates, leads to a representation of the leading-edge pressure field for the cascade given by

’ ) UAgn —i(y,k 2y ot
X j‘ﬂn(ﬂ’)fn (ﬂ’)e—iyzlx' d), (52)
K (A)

—oo

cosh(y2 y—h) 22 _ ) /@722 cosh(yzy //lz—wj)

cosh(yzh A - ) cos(@h+7,As")

A,(1)= (53

Well upstream of the 0" airfoil (i.e., x"<0) the contour in Eq. (52) can be completed in the upper-half-
plane and the integral evaluated using the residue theorem. Only o, that are real contribute to the integral.

After a fair amount of algebra, the result is

ip U, A €, cos(nmz/ L) N (2m7r—An,m)Z” (G;,m)

p (X, y,z,t)= " Z
ﬁ =0 ‘7( ( K) m=M, An,m‘yc‘n (Gn,m
y e—i[yz (c;mﬂcMg )x'+(2m7r—Anym )y/h+wt] (54)
where
A,,=0h+y,so;, (55)
M, = min[int((mh —y,d'w,)/21) , int((@h+7y,dw, )/2n)] (56)
M, = max[int((wh —y,d'w,)/2r) , int(@h+7,dw, )/275)] (57)
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Recall that due to the periodicity of the solution in y, one need only consider ye (0,%) in Eq. (54). As in
the previous problem, only a finite number of terms in the sum over index » contribute propagating waves

to the farfield. When computing the infinite products implied by the terms A, (-x) and X’ (G;,m),

however, it is necessary to include a sufficiently large number of evanescent modes in order to ensure
convergence of the infinite products.

Finally, the solution for the benchmark problem is given by
p(xy.z,t)=Re(p, (¥, y,2.1)) (58)

It is worth noting that if sweep is set to zero (i.e., o =0) the 2D-cascade response developed in ref. (5) is
essentially recovered from Eq. (54).

Results
The solution corresponding to the flow and gust parameters defined in the problem statement are
summarized in the figure below. The figure shows the sound pressure level reduction (in dB) due to

introduction of sweep at the upstream location: (=5¢,0,¢/2) as predicted by Eq. (58).

5

20log,, (p(o) /p(0), dB

B
S

_25 H H H H H H
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Category 4—Fan Stator with Harmonic Excitation by Rotor Wake

NUMERICAL RESULTS OF LIFTING SURFACE THEORY

Masanobu Namba
Kumamoto Institute of Technology
Kumamoto, Japan

and

Johan B.H.M. Schulten
National Aerospace Laboratory NLR
Emmeloord, The Netherlands

Introduction

The Category 4 problem of the 3" CAA Workshop is concerned with the noise resulting from rotor wakes
impinging on a stator. Traditionally, the solution of the rotor-stator interaction noise problem is obtained by the
application of a lifting surface method. These methods are based on the flow equations linearized about a
uniform mean flow and have become a well-established technique. A strong point of lifting surface methods is
the absence of numerical dissipation and dispersion errors, which prevent the application of regular CFD
methods so often for noise problems. Therefore lifting surface results are very suitable as a benchmark test for
CAA methods.

This paper gives the outline of the analytical methods based on the linearized lifting surface theory applied to
Category 4, and the resulting numerical data. Unfortunately no CAA results for this problem were officially
submitted at the 3" workshop. It will be shown that this problem is worth to be retained as a test case for future
CAA work.

Outline of Lifting Surface Theory

The original lifting surface theories by Namba (refs.1,2) and Schulten (refs.3,4) are formulated for a rotating
annular cascade of straight or swept blades. Just to avoid unnecessary complexity we describe here the
formulation applied to the present problem, i.e., a stator cascade of straight flat plates at zero stagger angle
interacting with oncoming sinusoidal gust. We also use the same notations as those used in the problem
description by Hanson.

Interaction of the stator vanes with an oncoming sinusoidal gust with a circumferential velocity

V(r, ¢, X,t) - leeiB[QX/U +p-0(r)-Qt] (1)
produces an unsteady blade loading. The pressure difference across the v—th blade surface can be expressed as
.. PUZAC (r,x)e VY =01,V 1. @)

Here p, is the ambient air density and @ = BLQ . Then the wave equation for the acoustic pressure generated
from the blades is given by

%ﬂ - v axﬁmp(r(p,xt)—po ”V'l;fé(r—r)dr
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b
><IACp (ry, X, ) e~ 2BV §(x —x,) dx, O (@ — 2rv/V). (3)
0

The boundary condition at the duct walls is
op/or=0 at r=R and r=h. 4)

The formal solution can be expressed as
R b

1 —|w
p(r. @, x,t) = poU2 t{drojAC o (Fos %) K (1,9, x =X, [ 1) X (5)
Here the kernel function is obtained as the solution of the following equations:

, 10, 0 (8 _
%] —ZH—|w+Ua—X§%Kp(r,q),x X |1o)

H 20
— Rz 5 5 < i2m,B/V5r 2 /V
==z 0(r=n) (X_Xo);e (p-2mnviV), (6)
0K, /or=0 at r=R and r=h (7
The solution is expressed as fO||0WS'
Kp(r,(p,x|r0)= z q)mu(r) q)mu(ro)
k==e0 p=] (8)

xexplimqo—l(MX /Bz)wx/U ~An Ix1/R]
Here
m=B-kV, M, =U/a,, B>=1-M2
Further A, is defined by
@JK D A2 o@
@—lsgn(w)J_ A<0 Q

Here k and ®. ) (u=012..) are radial eigenvalues and eigenfunctions respectively of the following

A={k2, -(@RIU)*M?/ B} B2 ©)

Sturm-Liouville boundary value problem

d¢mu(r)%% ! ED”‘“ (") =0, (10)
r dr

d  (r)/dr=0 at r=R and r=nh. (11)
The eigenfunctions are normalized as follows:
R
. %{r ®,, ()P, (Ndr=3,,. (12)

Therefore the mode shape function W . (r) defined in the problem description is given by
Y=o, i, 0] 13)
The blade loading function AC (r,x) can be determined from the flow tangency condition on blade surfaces,

which can be expressed by
R b

. %{ drOI AC, (ry, Xo) K, (r,0,x =X, [ 1p) dx, = /gl @x/U-iBO() (14)
0
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where K, (r,@,X | r,) is the upwash velocity kernel function given by

K, (ro.x| 1) :—e“”’UJ’ g iox/y i a(pK (r,@,x|r,)dx

__ Vv R e m’ Mo (r )eim(p—i(Mf/BZ)nx/U—/\m“|x|/R
Canf r L Z /\mu(laR/(BZU)+/\mysgn( )) a0
_ VR & & _
+H(x)e'V —— e (r.)e™, 15
( ) an - Z k2 +(C()R/U)2 mu( ) mu( 0) ( )

The integral equation (14) for ACp(r,x) should be solved numerically. Various methods are available. The

methods used for the present problem by Namba and by Schulten are described in Appendix A and B
respectively.

Finally the modal pressure amplitude A (x) defined by

p(r,@,x,1) = py z Z A () Wy, (1) €177752, (16)
can be calculated from
imV
X)=yM? o
A =y M o M o,.0]
(T 0O M?w Aoy

x?{ drO‘([ ACp(rO,xo)CDmy(ro)expE[— BZ U( - 0)— | X =X, |[gxo, @an

where y (=1.4) is the specific heat ratio of air.

Numerical Results

Numerical values of the modal pressure amplitude A, (X) calculated by Namba and Schulten are given in

Table 1 and Tables 2.1 — 2.10. To save space, circumferential wave numbers are confined to the smallest two;
m=16 and m=-8. The other modal pressure amplitudes are extremely small. The agreement between Namba’s
and Schulten’s data is fairly good. The discrepancies will come from various numerical processes in solving the
integral equation (14) and computing integrals in equation (17). In particular the exceptional large discrepancy
observed for Mt = 0.433 of the narrow annulus (Table 1) is due to the fact that the condition is very close to the
resonance (A, = 0) of the mode of m = -8, u=0.

Table 3 and Figure 1 show a comparison between the unsteady lift coefficient C_ (= Lb ACp(r, x)dx /(bV,))

at mid-span of the narrow annulus cascade and that of the corresponding 2-dimensional cascade. It is clear that
the flow field of the narrow annulus cascade is nearly two-dimensional. On the other hand the validity of the 2D
code used to compute the two-dimensional problems was ascertained from the fact that it exactly reproduces
Figure 5(a) of Hall and Verdon (ref.5), which was computed with Smith’s code.

It should be noted that in the full annulus cases, all modes are cut-off for M1=0.470, only one mode (m=-8,
u=0) is cut-on for Mt =0.522 and M+t =0.574, and two modes (m=-8, u =0), (m=-8, u =1) are cut-on for M+

=0.783. Certainly the amplitudes of cut-off modes are smaller than those of cut-on modes, but they are not
extremely small. This is because the axial positions one chord away from the leading and trailing edges are not
far enough for the cut-off modes to decay out. Therefore at more distant positions the difference in the
magnitude between cut-on and cut-off modes will be more pronounced. However to compute pressures at such
distant positions by CAA methods may worsen the problem of numerical dissipation and dispersion.
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In Figure 2 a comparison is made between the results of Namba and Schulten. The pressure jump distribution
(AC, based on pyU? /2) at mid-span for the full annulus is compared for the highest tip speed of the rotor

investigated in the present study (Mt = 0.783). It is clear that the agreement between both methods is very good.
Only in the aft portion of the chord some small discrepancies are visible.

A three-dimensional view on the pressure jump distribution over the whole reference vane is given in Figure 3.
In this case the incident velocity field is in phase along the span (g = 0.0) which is clearly reflected by the
behavior of the pressure jump in the vicinity of the leading edge. In the aft portion of the vane some mild
spanwise variation is discernable which results from the three-dimensionality of the stator.

As shown in Figure 4 the response of the stator is quite sensitive to the spanwise phasing of the impinging
field which is characterized by g = 1.5 in this case. This spanwise periodicity is only recognized in the pressure
jump distribution in the immediate vicinity of the leading edge. Further downstream, the spanwise response is
closer to one full wave length. But the most remarkable observation is the very large amplitude of the response,
which points to some kind of near-resonance behavior. This may have to do with the (intentional, see problem
description) similarity of the excitation with the acoustic radial mode shapes for u =1 (cut-on) and u = 2 (cut-
off) (m = -8).

The contrast with the results for q = 3.0, presented in Figure 4, is striking. It is hardly imaginable that the only

difference in the incident field is a spanwise phasing twice as high as in Figure 3. This phasing can still be
observed in the leading edge portion of the vane but vanishes downstream. It is reconfirmed even stronger that
the spanwise phasing is crucial to the stator response.
The q = 3.0 case was taken for another comparison between Namba’s and Schulten’s results. In Figure 5 the
pressure jump is compared along a spanwise line located at 6 percent of the chord. The agreement is quite
satisfactory but some slight discrepancies near the hub and the casing can be observed. Figure 6 gives the results
along a spanwise line at 20 percent of the chord. Here some more discrepancies are visible, not only at hub and
casing but also in the mid-span region. However, it should not be overlooked that the scale is four times larger
than in the previous figure. It seems as if the spanwise waviness first starts to disappear in the mid-span region.
Note that the pressure jump should have a zero derivative at hub and casing due to the hard wall boundary
conditions [Eq.(4)]. Relatively large discrepancies are observed along the 50 percent line in Figure 7. Only one
full spanwise wavelength can be observed here. Finally, in Figure 8 the pressure jump along the 90 percent line
shows a better, although not a perfect, agreement. In general, it seems that closer to the leading and trailing edges
the agreement is better than in the inner portion of the vane. It is noted that seemingly small discrepancies in the
pressure jump can affect the modal amplitudes more seriously. This may be the reason that, occasionally, the
agreement in the modal amplitudes is not as good as was expected by the authors on beforehand.

Concluding remarks

The Category 4 benchmark problem was successfully computed by two lifting surface methods. The problem
definition was well chosen to include some interesting near-resonance effects.
Comparison of the results of both methods showed good agreement on the whole. It appeared that relatively
small discrepancies in the pressure jump distribution could lead to relevant discrepancies in the modal
amplitudes. It would be helpful if in future CAA benchmarking of the rotor stator interaction problem, attention
will also be paid to the prediction of the pressure jump distribution rather than only to the modal amplitudes.
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Appendix A Namba’s Method

The kernel function of the integral equation (14) contains singularities of 1/(x —X,) and log|x =X, |. It is
desirable to calculate the principal values analytically rather than numerically. To do so it is necessary to extract
the singular parts from the kernel function. But it is not easy because the eigenfunctions ®  (r) do not

approach to definite values as m goes to infinity.
To cope with this difficulty Namba (refs.1,2) developed the method of finite radial mode expansion. The
essence of the method is to approximate the eigenfunction by a finite series expansion of the form:

®,,(n= Z_ B;(xnz)q)ozf (r). (Al)

- = m . . N -
Then the coefficients Bf,g) can be determined as eigenvectors of a real symmetric matrix, and we can calculate

the limit values of r!jm Bf,”z) = Bff;,) . Therefore the approximate eigenfunctions have definite limit functions of

@, (r) . Expressing the kernel function in terms of @ (r) or ®_ (r) , we can easily extract the singular parts
of the kernel function.
The unknown blade loading function is expressed in terms of double mode function series:
5 J-1 |:|

ACp(r,x):LZ_j¢m/(r)Eﬁﬁocot—+ZAfjsin(jE)D X=(1-cosé)b/2, (A2)
£ 0 2 £ 0

and the principal values can be analytically calculated. The problem reduces to algebraic equations for the
coefficients A, ;. This formulation also enables us to calculate the integrals in equation (17) analytically.

The accuracy of the numerical solution essentially depends on the numbers of retained terms L and J. To
solve the present problem L=21 and J=11 are adopted. It takes about 65 seconds to compute one case on PC of
Celeron 350 MHz.
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Appendix B Schulten’s Method

The first step to the numerical solution of Eq.14 is the representation of the unknown AC,. The chordwise

expansion is identical to Namba’s given in Eq. (A2). However, for the spanwise direction a Chebyshev (1* kind)
series is adopted. This series can be considered as a Fourier cosine series in the variable ¢y where
cosy =2(r-h)/(R-h)-1 (B1)

To solve the integral equation (14) numerically, a Galerkin procedure is followed. This means that both sides
of the equation are projected on a set of orthogonal basis functions. The advantage of a Galerkin method over a
collocation method is that the number of points on the vane surface can be taken (much) larger than the number
of unknowns . The Galerkin method yields the least squares fit to the point values on the vane. The Galerkin
basis functions used are Chebyshev 1% kind for the spanwise direction and 2" kind for the chordwise direction.
Gauss-Lobatto integration formulae (ref. 6) are used to evaluate the integrals.

The number of required projections is taken to be sufficient to capture the right hand side to a preset accuracy.
In the present study an accuracy of 0.004 relative to the largest right hand side term was adopted throughout.
Further, the expansions are taken sufficiently large to resolve the shortest acoustic wave lengths upstream and
downstream as well as in spanwise direction. The final criterion is that also the hydrodynamic wave is accurately
resolved. For the most demanding case (M= 0.783, g = 3.0), the maximum number of required projections was
17 spanwise x 9 chordwise. These numbers were also taken for J and L respectively in the expansion of AC,.

After taking the Galerkin projections the integral equation turns into a matrix equation the left hand side of
which contains a series in k which essentially is a Fourier series in the circumferential coordinate. This is a
slowly convergent series with terms behaving as 1/k* asymptotically. To obtain an accuracy of, say, £ = 0.004
with respect to the largest element in its row of the matrix would require something in the order of 1/ = 250
terms. This would be very hard computationally. Therefore a 2" order Richardson extrapolation (ref.7) is
applied to the k-series. For the most demanding case (see above) this limits knax to 18. Nevertheless, the total
computing time for this matrix is about 40 hours on a 300 MHz PC.

In the present method the evaluation of the infinite radial series over ~ pas occurring in  Eqgs. (8) and (15) is

handled quite differently from Namba’s method. As described in ref.4, the series can be replaced by an integral
in the complex a-plane, where a is the wave number in x-direction. By deforming the contour of integration

away from the poles, a smooth integrand is obtained that can be accurately integrated numerically. The only
difficulty is encountered for a case very close to duct mode resonance (cut-on) when the path of integration has
to pass two poles very closely. This integral representation is especially advantageous for vanes of arbitrary
shape. For the unswept vanes with constant chord of the present configuration it is considerably more time
consuming than Namba’s method.
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Table 1. Narrow Annulus q =0

Tables

Upstream Waves: x=-b
M=16 m =-8
Mt Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
0.3897 -2.422E-05 -1.930E-05 9.174E-06 8.120E-06 -5.067E-03| -5.407E-03 1.924E-03 2.231E-03
0.4330 -9.952E-05 -8.599E-05| -1.874E-05| -5.001E-06 -1.142E-03| 2.083E-03| -2.170E-04 3.459E-04
0.4763 -1.043E-04 -1.033E-04| -7.110E-05| -6.823E-05 -7.603E-03| -7.538E-03 1.837E-03 2.055E-03
0.6495 -8.334E-05 -1.074E-04| -4.261E-04| -4.033E-04 7.577E-03| 7.364E-03| -1.814E-03 -2.453E-03
Downstream Waves: x=+2b
m =16 m =-8
Mt Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
0.3897 -6.945E-05 -7.063E-05 3.666E-05 3.999E-05 8.584E-03| 8.734E-03| -4.532E-03 -4.943E-03
0.4330 -5.302E-05 -4.718E-05 1.641E-05 8.436E-06 1.715E-02| 3.410E-03| -5.298E-03 -6.981E-04
0.4763 -3.587E-05 -3.619E-05 1.999E-05 2.090E-05 1.050E-02| 1.061E-02 1.604E-02 1.556E-02
0.6495 2.529E-05 1.903E-05 1.282E-05 5.809E-06 -1.120E-02|-9.946E-03 5.684E-03 5.870E-03
Table 2.1 Full Annulus : g=0, Mt =0.470
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -6.635E-05| -5.482E-05| 1.687E-05 1.047E-05 -2.073E-03| -2.881E-03| -1.955E-03 -1.456E-03
u=1 -7.690E-06| -8.411E-06| -5.077E-06 -3.579E-06 1.894E-04 2.546E-04 4.300E-04 2.595E-04
u=2 -1.500E-06| -1.950E-06| -1.921E-06 -1.272E-06 2.341E-05 3.635E-05 6.261E-05 4.026E-05
u=3 -3.851E-07| -5.237E-07| -5.331E-07 -4.021E-07 1.312E-06 1.958E-06 2.356E-06 2.221E-06
u=4 -4.975E-08| -7.115E-08| -7.526E-08 -6.257E-08 5.220E-08 8.742E-08 1.119E-07 1.097E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -7.287E-05| -6.680E-05| 3.060E-05 3.998E-05 9.484E-03 9.296E-03| -4.826E-03 -5.798E-03
u=1 -2.814E-06| -3.457E-06| 3.402E-06 3.081E-06 -3.249E-06 9.737E-05| -2.600E-04 -1.776E-04
u=2 -7.340E-08| -3.810E-07| 6.725E-07 4.967E-07 -1.264E-05| -1.055E-07| -2.353E-05 -1.290E-05
u=3 3.477E-09| -5.530E-08| 1.562E-07 1.054E-07 -1.534E-07| -1.315E-07| -8.371E-07 -4.555E-07
u=4 3.018E-09| -2.657E-09| 1.857E-08 1.123E-08 -1.415E-08| -1.294E-08| -2.883E-08 -1.219E-08
Table 2.2 Full Annulus : q =0, My =0.522
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -1.224E-04| -1.190E-04| -8.522E-05| -5.906E-05 1.792E-02 1.529E-02 1.153E-02 5.181E-03
u=1 -3.614E-06| -6.159E-06| -7.968E-06| -1.302E-05 -4.648E-04 -1.110E-05 4.768E-04 1.032E-03
u=2 1.995E-07| -5.846E-07| -1.308E-06| -3.141E-06 -5.493E-05 -1.412E-05 3.837E-05 1.073E-04
u=3 5.952E-08| -4.987E-08| -2.994E-07| -8.420E-07 -1.006E-06 -9.035E-07 1.465E-06 4.692E-06
u=4 9.765E-09 5.772E-09| -3.386E-08| -1.138E-07 -4.796E-08 -5.519E-08 4.262E-08 1.867E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -6.237E-05| -7.757E-05 1.613E-06 2.344E-05 3.928E-02 4.724E-02 -5.248E-03| -9.905E-03
u=1 -2.969E-06| -7.565E-07 6.235E-06 4.294E-06 6.465E-05 -3.512E-04 -8.589E-04| -4.707E-04
=2 -2.241E-07 4,121E-07 1.726E-06 9.459E-07 -3.234E-06 -4.480E-05 -8.308E-05| -4.237E-05
u=3 -3.758E-08 1.651E-07 4.150E-07 2.376E-07 1.173E-07 -1.916E-06 -2.440E-06| -1.623E-06
u=4 -2.497E-09 2.756E-08 5.147E-08 3.011E-08 -3.218E-09 -8.002E-08 -9.167E-08| -5.717E-08
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Table 2.3 Full Annulus, q =0, My =0.574

Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -8.222E-05| -9.639E-05| -1.274E-04 -1.175E-04| -1.970E-02 -1.725E-02 7.111E-05 4.671E-03
u=1 -7.084E-06| -5.057E-06| -8.093E-06 -6.979E-06| -1.293E-05 -4.105E-04 1.297E-04 1.377E-04
u=2 -1.488E-06| -8.443E-07| -1.246E-06 -9.783E-07 1.088E-05 -2.539E-05 9.418E-06 4.041E-06
u=3 -4.026E-07| -2.110E-07| -3.127E-07 -1.884E-07 1.214E-06 -4.166E-07 1.065E-06 7.052E-08
u=4 -5.554E-08| -2.855E-08| -3.953E-08 -1.787E-08 5.876E-08 7.636E-10 3.681E-08| -5.059E-09
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -4.189E-05| -4.431E-05 1.166E-05 1.088E-05 6.598E-03 5.028E-03 2.515E-02 2.561E-02
u=1 -4.419E-06| -3.181E-06 5.204E-06 6.692E-06 4.831E-04 2.696E-04 -8.430E-04  -1.146E-03
u=2 -8.140E-07| -4.852E-07 1.313E-06 1.633E-06 3.338E-05 1.562E-05 -6.704E-05 -9.173E-05
u=3 -1.816E-07| -9.871E-08 3.064E-07 4.253E-07 1.042E-06 4.736E-07 -1.848E-06 -3.356E-06
u=4 -2.087E-08| -1.003E-08 3.725E-08 5.548E-08 3.322E-08 1.101E-08 -6.705E-08 -1.176E-07
Table 2.4 Full Annulus q =0, MT =0.783
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 2.541E-04 1.486E-04 -6.945E-04 -6.906E-04 3.493E-03 5.140E-03 1.125E-02 1.056E-02
u=1 6.726E-06 6.191E-06 -2.322E-05 -2.409E-05 -6.674E-03 -7.631E-03 -1.811E-02 -1.747E-02
u=2 1.188E-06 8.004E-07 -3.107E-06 -3.231E-06 -1.816E-04 -8.145E-05 1.243E-04 1.072E-04
u=3 2.634E-07 1.324E-07 -7.104E-07 -7.178E-07 -3.028E-06 -1.370E-06 4.329E-06 4.021E-06
u=4 2.739E-08 1.044E-08 -8.201E-08 -8.572E-08 -6.474E-08 -2.451E-08 1.053E-07 1.271E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 2.088E-05| -3.081E-05| -1.024E-04 -1.007E-04| -1.707E-02 -1.497E-02 -1.594E-03| -2.731E-04
u=1 -1.025E-05| -8.833E-06 5.674E-06 5.207E-06 7.702E-03 8.603E-03 1.731E-02 1.564E-02
u=2 -1.824E-06| -1.898E-06 1.295E-06 1.428E-06 1.022E-04 1.729E-04 -1.558E-04| -2.034E-04
u=3 -3.404E-07| -4.196E-07 2.745E-07 3.240E-07 1.589E-06 3.048E-06 -2.310E-06| -3.024E-06
u=4 -3.730E-08| -4.788E-08 3.130E-08 3.878E-08 6.709E-08 8.474E-08 -6.732E-08| -8.943E-08
Table 2.5 Full Annulus q =0.5, My =0.783
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 2.295E-04 2.607E-04 5.566E-04 5.036E-04| -7.152E-03 -7.285E-03 1.333E-05 2.304E-05
u=1 1.703E-05 2.046E-05 5.059E-06 1.080E-05 1.109E-02 1.241E-02 -1.667E-02| -1.951E-02
u=2 3.463E-06 3.173E-06| -2.646E-06 -3.587E-06| -5.908E-04 -2.929E-04 5.684E-04 9.876E-04
u=3 8.275E-07 6.741E-07| -8.096E-07 -1.316E-06| -8.793E-06 -5.157E-06 8.222E-06 1.661E-05
u=4 5.814E-08 6.093E-08| -9.399E-08 -1.778E-07 3.554E-08 -4.438E-08 1.225E-07 3.835E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -1.625E-05| -1.893E-05| -3.463E-05 -2.728E-05 1.132E-02 8.825E-03 -1.370E-02| -1.405E-02
u=1 -1.517E-05| -7.840E-06 8.852E-06 1.166E-05 5.529E-03 8.351E-03 2.134E-02 1.706E-02
u=2 -1.591E-06| -2.141E-06| -5.765E-07 -8.008E-07| -1.701E-04 2.677E-04 5.495E-04 7.376E-04
u=3 -1.457E-07| -5.001E8007| -4.244E-07 -5.714E-07| -2.808E-06 4.390E-06 9.158E-06 1.251E-05
u=4 -1.139E-08| -5.981E-08| -5.678E-08 -8.514E-08| -2.334E-09 1.255E-07 1.476E-07 2.690E-07
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Table 2.6 Full Annulus q =1.0_M =0.783

Upstream Waves x=-b

m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -2.151E-04 -2.711E-04| -2.391E-04| -3.082E-04 1.063E-03 3.948E-03 1.310E-03 1.371E-03
u=1 -1.491E-05 -2.915E-05 3.802E-06 1.870E-05 8.336E-03 1.860E-02 1.009E-02 1.338E-02
u=2 5.645E-06 7.245E-06 1.242E-06| -1.626E-09| -1.471E-03| -2.266E-03| -7.834E-04 3.048E-04
u=3 7.557E-07 1.952E-06 5.352E-07| -1.631E-07| -4.147E-08| -1.947E-05| -1.607E-05 1.823E-07
u=4 -6.994E-09 1.789E-07 8.519E-08| -1.049E-09 2.238E-07| -2.077E-07| -3.766E-07| -1.231E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Im Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 1.419E-04 3.216E-05| -1.141E-04| -1.743E-04 1.987E-03 4.907E-03 9.959E-03 8.607E-03
u=1 -3.118E-05 -3.213E-05| -1.251E-05 7.415E-06| -1.679E-02| -5.257E-03 2.178E-02 2.413E-02
u=2 1.238E-06 1.370E-06| -4.899E-07| -2.064E-06| -1.635E-03| -1.746E-03| -4.069E-04 8.727E-04
u=3 1.155E-06 1.267E-06 1.501E-07| -8.691E-07| -2.597E-05| -2.838E-05| -6.972E-06 1.425E-05
u=4 1.567E-07 1.764E-07 2.462E-08| -1.140E-07| -4.218E-07| -4.800E-07| -9.487E-08 2.750E-07
Table 2.7 Full Annulus q =1.5, My =0.783
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 2.151E-04 3.234E-04 1.990E-04 1.278E-04| -3.762E-03| -4.124E-03| -2.203E-04 2.379E-03
u=1 1.652E-06 -1.293E-05| -1.816E-05| -2.847E-05| -8.479E-03| -1.073E-02| -3.723E-03 5.808E-03
u=2 1.008E-06 2.192E-06 5.194E-06 6.159E-06 3.715E-04| -6.205E-04| -1.112E-03| -1.650E-03
u=3 7.308E-08 7.286E-07| -5.011E-07 4.380E-07 1.778E-05 2.586E-06 2.463E-05 8.658E-06
u=4 -2.661E-07 -1.646E-07| -1.873E-07| -3.530E-08 1.840E-06 1.473E-06 2.679E-07| -7.326E-08
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 7.441E-05 1.402E-04 1.266E-04 2.861E-05| -1.104E-03| -1.276E-03| -4.053E-03| -1.952E-03
u=1 1.771E-06 -1.460E-05| -2.379E-05| -2.232E-05| -1.290E-02| -1.342E-02| -1.786E-03 7.195E-03
u=2 -4.071E-07 9.430E-07 1.695E-06 1.643E-06 2.264E-04| -8.604E-04| -1.431E-03| -1.384E-03
u=3 -1.939E-07 6.728E-07 1.080E-06 1.071E-06 4.634E-06| -1.351E-05| -2.161E-05| -2.156E-05
u=4 -2.658E-08 9.155E-08 1.431E-07 1.454E-07 8.860E-08| -2.293E-07 -3.754E-07| -3.841E-07
Table 2.8 Full Annulus q =2.0, Mt =0.783
Upstream Waves, x=-b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -1.655E-04 -1.630E-04 -5.795E-05| -3.128E-05 8.854E-04 8.971E-04| -9.089E-05| -2.980E-04
u=1 7.105E-06 6.334E-06 -1.076E-06| -3.142E-06 4.251E-03 3.284E-03| -2.294E-03| -1.984E-03
u=2 -2.101E-06 -1.869E-06 9.234E-07 1.126E-06| -1.020E-06| -4.847E-05| -1.195E-04| -2.211E-04
u=3 1.139E-06 1.113E-06 5.017E-07 5.386E-07| -2.845E-05| -2.699E-05 9.511E-06 8.071E-06
u=4 1.707E-07 1.548E-07 -3.971E-07| -3.633E-07 4.429E-07 4.618E-07 2.714E-06 2.503E-06
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -9.715E-06 -6.093E-06 -1.819E-05| -8.570E-06 1.026E-03 1.317E-03 3.203E-03 2.805E-03
u=1 -8.477E-07 -2.302E-06 -3.636E-06| -4.420E-06| -4.846E-03| -5.003E-03 3.659E-03 4.453E-03
u=2 -6.190E-07 -5.247E-07 -2.135E-07| -1.204E-07 1.139E-04 3.086E-05| -7.585E-05| -1.458E-04
u=3 -1.372E-07 -8.094E-08 -6.714E-10 5.737E-08 5.670E-07| -5.327E-07| -3.561E-07| -1.646E-06
u=4 -1.550E-08 -7.661E-09 -5.687E-10 8.106E-09 3.488E-08 1.104E-08 1.259E-08| -1.193E-08

NASA/CP—2000-209790

81




Table 2.9 Full Annulus q =2.5, My =0.783

Upstream Waves, x=-b

m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 1.120E-04| 1.587E-04 8.099E-05 5.307E-05 -2.015E-03| -2.228E-03 2.092E-05 1.137E-03
u=1 2.381E-06| -2.963E-06| -3.944E-06 -8.550E-06 -2.597E-03| -3.704E-03 -1.874E-03 1.704E-03
u=2 3.718E-07| 7.788E-07 3.257E-07 8.292E-07 1.562E-04| -2.159E-04 -4.155E-04 -6.501E-04
u=3 -3.968E-07| -1.115E-07 4.161E-07 7.756E-07 6.050E-07| -5.117E-06 -5.274E-06 -1.060E-05
u=4 2.676E-07| 2.871E-07 9.914E-09 5.259E-08 -1.620E-06| -1.612E-06 9.243E-07 8.243E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 3.383E-05| 6.089E-05 4.788E-05 9.554E-06 -4.152E-04| -5.593E-04 -2.263E-03 -1.433E-03
u=1 6.928E-07| -5.671E-06| -9.390E-06 -9.323E-06 -5.606E-03| -6.059E-03 -4.126E-04 3.095E-03
u=2 -2.515E-07| 2.610E-07 5.447E-07 5.622E-07 1.079E-04| -3.089E-04 -5.412E-04 -5.530E-04
u=3 -9.519E-08| 2.353E-07 4.061E-07 4.230E-07 1.625E-06| -5.251E-06 -8.799E-06 -9.154E-06
u=4 -1.124E-08| 3.304E-08 5.430E-08 5.849E-08 2.289E-08| -9.597E-08 -1.397E-07 -1.539E-07
Table 2.10 Full Annulus q =3.0, My =0.783
Upstream Waves, x=-b
m :16 m =-
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -9.928E-05| -1.031E-04| -3.509E-05 -1.889E-05 5.764E-04 6.058E-04 -9.392E-05 -2.580E-04
u=1 3.082E-06| 2.825E-06| -3.724E-07 -1.612E-06 2.669E-03 2.213E-03 -1.441E-03 -1.365E-03
u=2 -4.728E-07| -3.774E-07 6.002E-07 7.317E-07 -9.207E-06| -3.803E-05 -6.399E-05 -1.247E-04
u=3 3.721E-07| 3.761E-07| -2.232E-08 1.822E-08 -1.089E-05| -1.089E-05 3.008E-06 2.595E-06
u=4 4.869E-08| 5.559E-08 1.652E-08 1.860E-08 -4.233E-07| -4.470E-07 1.647E-07 1.683E-07
Downstream Waves, x=+2b
m =16 m =-8
Real Imag Real Imag
Namba Schulten Namba Schulten Namba Schulten Namba Schulten
u=0 -5.613E-06| -3.755E-06| -1.069E-05 -4.942E-06 6.404E-04 8.712E-04 1.947E-03 1.768E-03
u=1 -5.973E-07| -1.508E-06| -2.136E-06 -2.709E-06 -2.955E-03| -3.133E-03 2.274E-03 2.865E-03
u=2 -3.657E-07| -3.265E-07| -1.472E-07 -9.456E-08 6.815E-05 2.212E-05 -4.114E-05 -8.419E-05
u=3 -8.694E-08| -5.794E-08| -3.965E-09 3.026E-08 5.958E-07| -7.943E-09 -3.561E-07 -1.068E-06
u=4 -9.828E-09| -6.417E-09 9.234E-11 4.465E-09 1.807E-08 8.769E-09 -1.317E-09 -1.267E-08

Table 3. Comparison of lift coefficient between 3D cascade (narrow annulus)
at mid span and corresponding 2D cascade.

3D (Narrow annulus) 2D
MT Real Imag Real Imag
0.3897 -2.263E-01 1.825E-01 -2.336E-01 1.971E-01
0.4330 -4.209E-02 1.064E-01 -4.030E-02 1.039E-01
0.4763 1.273E-02 1.453E-01 1.816E-02 1.413E-01
0.6495 8.959E-02 1.806E-01 9.709E-02 1.586E-01
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Figure 1 Comparison of lift coefficient between 3D cascade (narrow annulus) at mid span and
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SOLUTION TO THE CATEGORY 5 PROBLEM:
GENERATION AND RADIATION OF ACOUSTIC WAVES FROM A 2D SHEAR LAYER

MILO D. DAHL
NASA Glenn Research Center
Cleveland, OH

A thin free shear layer containing an inflection point in the mean velocity profile is inherently unstable.
Disturbances in the flow field can excite the unstable behavior of a shear layer, if the appropriate combination
of frequencies and shear layer thicknesses exists, causing instability waves to grow. For other combinations
of frequencies and thicknesses, these instability waves remain neutral in amplitude or decay in the down-
stream direction. A growing instability wave radiates noise when its phase velocity becomes supersonic
relative to the ambient speed of sound. This occurs primarily when the mean jet flow velocity is supersonic.
Thus, the small disturbances in the flow, which themselves may generate noise, have generated an additional
noise source. It is the purpose of this problem to test the ability of CAA to compute this additional source of
noise.

The problem is idealized such that the exciting disturbance is a fixed known acoustic source pulsating at
a single frequency. The source is placed inside of a 2D jet with parallel flow; hence, the shear layer thickness
is constant. With the source amplitude small enough, the problem is governed by the following set of linear
equations given in dimensional form.

2 U B oG o0 3+ B o g
W L @
- ®
aa_lzl T U(y)%—liijP%—i +yPaa—‘;/ = Aexp [-BIn2 (x* +y*)] cos(ox) 4)

We begin the analysis to solve for the pressure disturbances by nondimensionalizing the above set of
equations. The physical coordinates are scaled by the half-velocity distance R;/,. The velocity is scaled
by the jet velocity Uj, the density by p;, the pressure by p jsz, and the time and frequency by R; /» JU;.
The equations are then combined into a single, nondimensional, third-order, inhomogeneous differential

equation.
0 LAY L[ oN(Pp Fp\ 19 (0 9\
o Yox) P pmE [\ar T ax ) \o T 92 ) Thay \ar T ax) oy

i 9%p 9 _9\’
- 2@@} = (gJF“a—x) S(x,y:1) S)

If the source term in equation (5) is defined as

S(x,y,1) = A*e B I2A47) pion (6)
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where A* = AR »/p jU; and B* = BR% /2 then the solution to equation (5) is given by the real part of the
complex disturbance pressure p. (Note that the real part of equation (6) is the source term in equation
(4).) The approach that follows constructs an integral equation using a Green’s function that solves for p in
equation (5).

Assume that the solution is harmonic with the source term. After differentiating with respect to time and

dividing through by e~'® equation (5) becomes
A 1 AN (Pp Pp\ 1p( . 9\
("‘”*“a—x) P o [(""’*“a—x) (a?*a—yz) “pay (""’*“a—x) a
dii 0°p 0
2T == i— | S 7
ayaxay} < w)+uax) 1(x,y) (7)
where AP
S1(x,y) = (—io—2B'xii(y))A*e B e BY (8)
and B' = B*In2.
Defining the Fourier transform of the x variable as
- o L —ikx
plky)=5_ | plxy)e Tdx, 9)

the transform is applied to equation (7) and the results rearranged to obtain

J 1 aﬁ k2 511 (kay)
. - H — D — — . 10
3 [ﬁMJZ-(w—ﬁk)Z | P e—a2’ T (w—ak)? (19)
Equation (10) has the form of a Sturm-Liouville equation.
)
— |la=—|+bp—Acp = f(k 11
> [aay}r p—Acp = f(k,y) (11)
The solution of this equation is expressed as the integral
k) = [ £y Gk iy dv, (12)
0
where G(k,y;Y,) is the Green’s function that solves
J [ oG ~ ~
— la=— | +bG—AcG =d(y—y, 13
Jy laay}+ C (y )’)) (13)

subject to the same boundary conditions as apply to p in equation (11). These conditions are symmetry at
y = 0 and outgoing waves as y — oo.
The Green’s function derived from equation (13) has the form

~ Ao(k;yo)

G(k,y;y0) = Alkyy) [Ca (K, 30)C1 (k) H (Yo —¥) + 81 (k,30)Ca(k, y)H (Y — o )] (14)
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where

Alkeyo) = €1k yo) 2202 1y SL20)

= Ar)(@ﬁ()’r))(m_’f_‘()’())k)za (15)

Ao (k,yo) = ﬁ()’r))MJZ‘((D_ ii(yo)k)?, (16)
and H is the step function defined as
1,z>0
H(z) = %, 7z=0
0, z<0.

From the boundary condition at y = 0, d{;/dy = 0 and as y — oo, { — exp(ivy) where v = \/kZ —k? and
k2 = ﬁoosz-wz. The branch cuts associated with v are chosen such that —m/2 < arg(v) < m/2 to insure
outgoing waves.

It is now a matter of substituting both f(k,y,) and G(k,y;y,) into equation (12) and applying the inverse
Fourier transform

plx,y) = / Bk,y)edk (17)

to get the general integral solution for the disturbance pressure

IA*M? [T
_ J e
pe(x,y) = o \ B

| [ G [ oo a(r) B2 gy, | otar

A(k7y0)
oo y
o y
+ / eIy (k. y) / ﬁ(yo)(w—ﬁ(yo)k)%eB/y%dyo e™dk| . (18)
7y0
e 0

To obtain this equation, equation (8) was used to complete the integration in f(k,y,).

Sl (k7yo)
(o— lz(yo)k)z

1 [oe] .
= — S _lkx"d
275(0)—1/7())0)/()2 / 1(x0,y0)e Yo

iA* T 7B/y2 *k2/4B/
_ Ty 19
nto—ab)o \ BC ¢ (19)

f(kay()) = -

One major goal of this problem is to compute the pressure disturbance generated by a growing instability
wave excited in the shear layer by the acoustic source. The instability wave comes from the homogeneous
solution to equation (10). Hence, we have an eigenvalue problem where a nonzero solution exists at k equal
to the eigenvalue o and p has the form of the eigenfunction {. In the limit as k — o, both {; and {, — {
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giving the result in equation (15) that A(k,y,) = A,(k) = 0 for all y,. Thus, a simple pole exists at k = o in
equation (18) and the solution for the inverse Fourier transform can be determined by residue theory. The
instability wave solution for the pressure disturbance is

% T
po(x,y) =AM}, [ =

— o2 /4B °°_ . Clo,y,) g 2 iow
x e I o) O/ P(30) (0 0)) 3o 0o, e 20)

The total solution for the pressure disturbance with a growing instability wave is the sum of p,(x,y)
and py(x,y) given by equations (18) and (20). Outside of the jet, this represents the pressure disturbances
generated by the instability wave and the disturbances that are generated directly by the source and propagate
outward through the jet flow. If the pressure was to be computed in the far field, then the inverse Fourier
transform in equation (18) could be found by using asymptotic methods. But the solution is desired close to
the jet flow, hence the integrals must be computed numerically.

Solution for St = 0.14

The path of integration to numerically solve for the inverse Fourier transform in equation (18) is shown
in Figure 1. The horizontal path slightly deviates from the real axis to avoid the branch cuts and insure that
the outgoing wave boundary conditions are satisfied. In addition, this path also attempts to avoid the real
axis where ® — ii(y, )k = 0. The vertical portion of the path is traversed twice in opposite directions resulting
in no contribution from the integration along this section of the path. Thus, the total solution is the sum of
the numerical integration of equation (18) along the horizontal path plus the residue solution at k = o given
by equation (20).

The problem statement asked for the computed pressure disturbance in the x-direction at y/R; p=1As
of the workshop, the method of numerically integrating equation (18) has not been proven to converge to a
reliable solution. Hence, Figure 2 shows only the growing instability wave solution. The eigenvalue for this
instability wave is o0 = 0.61489 —i0.067236.

Outside of the jet, the numerical integration converged to a consistent solution. The computed mean
square pressures are shown in Figure 3 in the x-direction at y/R; /2 = 10 and in the y-direction at x/R, /2 =150.

Solution for St = 0.60

At a Strouhal number of 0.60, the flow conditions and the shear layer width do not support a growing
instability wave. Thus, only equation (18) is used to compute the pressure disturbance outside of the jet and
only the horizontal path of integration is followed in Figure 1. The result for the mean square pressure are
shown in Figure 4.
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Figure 1: Path of integration in the k-plane for computing the inverse Fourier transform.
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Figure 3: Mean square disturbance pressure outside of the jet at St = 0.14 with growing instability wave.
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Figure 4: Mean square disturbance pressure outside of the jet at St = 0.60, acoustic source only.
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CATEGORY 6
AUTOMOBILE NOISE INVOLVING FEEDBACK -
SOUND GENERATION BY LOW SPEED CAVITY FLOWS

BRENDA HENDERSON
Kettering University
Mechanical Engineering Department
Flint, MI

Abstract

The category 6 problem involves the calculation of interior sound pressure levels produced by the flow
of low speed air over a deep cavity. The cavity geometry is similar to the one occurring in vehicle door
gaps. The velocity of the approach flow ranges between 26.8 m/s and 50.9 m/s. In this study, experimental
data is obtained for comparison with numerical results. Multiple discrete frequencies occur for a range of
approach flow velocities and for both “thick” and “thin” boundary layers. These tones appear to be

associated with both fluid dynamic and fluid resonant oscillations.

I ntroduction

The discrete frequency sound produced by the flow of air over cavities is part of a feedback loop. The
oscillating shear layer crosses the cavity mouth, impinges on the trailing edge of the cavity, and causes an
oscillating mass flow rate in the region of the cavity mouth. Sound is produced by the interaction of the
shear layer with the trailing edge wall or by the oscillating mass flow rate in the cavity mouth region. The
sound feeds back to the cavity entrance and excites the oscillations of the shear layer, thus closing the
feedback loop.

The oscillations occurring in cavity flows can be categorized as fluid-dynamic, fluid-resonant, or fluid-
elastic'. Fluid-dynamic oscillations arise from the instability of the shear layer in the cavity mouth. Fluid-
resonant oscillations are the result of, or are enhanced by, resonant waves within the cavity. Depending on
the cavity geometry, either longitudinal waves (waves traveling between the leading edge and trailing edge
walls) or transverse waves (waves traveling between the cavity floor and mouth) can be excited'. Fluid
elastic resonance occurs when fluid resonance is enhanced by oscillations of the cavity surfaces.

The type of fluid resonant behavior displayed by cavity flows depends on the cavity geometry (see
Fig. 1). Shallow cavities, cavities with depth to length ratios less than one (D/L < 1), can produce
longitudinal waves. These cavities often produce flow that separates from the leading edge, and reattaches at
the base of the cavity>**. Deep cavities, cavities with a depth to length ratio greater than one (D/L > 1), can
produce transverse waves’. For the case of steady flow in deep cavities, the separated flow no longer
reattaches to the cavity floor and a general vortex system exists in the cavity’.

A number of models exist for predicting the frequency of discrete tones in cavity flows"*>°. The
agreement between experimental data and predictions based on these equations depends on the speed of the
approach flow. Some experiments also indicate that the frequency of tones can be somewhat dependent on
boundary layer thickness’.

The benchmark problem for category 6 is the numerical simulation of flow for a deep cavity with an
overhang at the cavity entrance. The numerical results are to be compared to experimental results obtained
in this study.
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Problem Statement

The geometry used for the category 6 problem is shown in Fig. 2. The boundary layer is turbulent with
a boundary thickness of 1.6 cm at an approach velocity of 26.8 m/s, and 2.2 cm at an approach velocity of
50.9 m/s. A one-seventh power-law velocity profile may be used for simplicity. Compare numerical results
for sound pressure level values at the center of the left wall with experimental values for approach flow
velocities between 26.5 and 50.9 m/s.

Experiment

The cavity studies were conducted in a recirculating wind tunnel with an 187x18”x48” test section. The
tunnel is equipped with silencers before and after the fan to reduce sound pressure levels in the flow.

For the experiments in this investigation, the top surface of the wind tunnel test section was replaced
with a cavity assembly containing the cavity shown in Fig. 2. The width of the cavity was 25 cm. Two 1/4”
type TMS140BP and TMS140BF G.R.A.S. condenser microphones were mounted flush with the left wall.
The signals from the microphones were analyzed on an HP 35670A dynamic signal analyzer. A flat top
window was used for the FFT analysis.

Prior to acquiring the sound-pressure level data, a boundary layer study was conducted with a hot-wire
anemometer. Based on the results obtained, two streamwise locations in the test section were chosen for the
cavity experiments to determine the effect of boundary thickness on the onset of instability. The boundary
layer thickness at the first location was 2mm at 30 m/s, and 1.2 cm at 50 m/s. For the second location, the
boundary-layer thickness was 2 mm at 30 m/s, and 1.2 cm at 50 m/s. The boundary layer values at the
second location were close to those given in the problem statement. It was not possible to obtain the exact
boundary layer thickness prescribed in the problem statement without artificially increasing the roughness
of the tunnel surfaces. These two studies are referred to as “thick” and “thin” boundary layer studies in the
following sections.

Results

The sound pressure levels associated with the thin and thick boundary layer studies are shown in Figs. 3
and 4. As often occurs for cavities with entrance overhangs®’, multiple discrete tones are observed in the
spectra. The number of discrete tones produced by the cavity flow depends on the flow speed and the
boundary layer thickness. One tone is often associated with fluid-dynamic oscillations while other tones are
likely the result of resonance within the cavity. In addition to the expected transverse waves in the cavity,
an additional type of tone occurs that does not appear to be related to fluid-dynamic oscillations, expected
frequencies for transverse waves, or expected frequencies for longitudinal waves®. These tones may be the
result of longitudinal wave motion restricted to the cavity mouth region or other cavity modes that are
unique to this type of cavity geometry.

The discrete frequencies for the spectra of Figs. 3 and 4 are shown in Tables 1 and 2. The tones have
been categorized by resonance mode. Fluid-dynamic tones and transverse wave frequencies have been
identified by comparison with other published data and analytical results. Correlation studies were not
performed in this investigation.

For the tones associated with fluid-dynamic resonance, the convection speed of the disturbances in the
cavity mouth were determined using a simple hydrodynamic model resulting in’

fab=cth-17- 2.1
[

ng
where f is the measured frequency of sound, n is the mode number, b is the length of the cavity mouth, @is a

phase angle which accounts for the possibility of a phase shift between the interaction of the disturbance
with the edge and the response of the shear layer to the encounter, and C is the convection speed of the
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disturbances in the cavity mouth. For low speed flows, good agreement between this equation and
experimental values is obtained when @ = 0. The values for Cc in Table 1 and 2 range from approximately

43% to 50% of the mean stream velocity. The theoretical value for the convection speed of the disturbances
is 50% of the mean stream velocity but experimental values are usually slightly lower. This is an indication
that these tones are likely the result of fluid-dynamic oscillations. The slightly higher value for C associated
with the thick boundary layer and an approach flow velocity of 40 m/s is probably due to breadth of the
peak around 1760 Hz. For the thin boundary layer at the same speed, a double peak occurred in the
spectrum with frequencies that were quite close together. The broad peak for the thick boundary layer may
have masked the double peak and resulted in slightly higher calculated convection speed.

The peaks associated with transverse waves have been identified by comparison with published data’.

f D
The critical dimensionless numbers for this type of tone are —Wave = and —, where f g, is the

a
frequency of the discrete tone, D is the cavity depth, and L is the cavity length. Good agreement between
these experiments and other published data is obtained when the cavity mouth opening is used for L.

One additional consideration should be made when directly comparing numerical results to experimental
results. When multiple tones occur in the spectrum, the preferred or dominant mode often changes
randomly. This can result in a change of 3 dB or more in the peak sound pressure levels.

It is possible to determine some of the effects of boundary layer thickness on the production of discrete
tones by comparing Figs. 3 and 4 as well as Tables 1 and 2. For the thin boundary layer study, well defined
discrete frequencies occur consistently for approach flow velocities greater than or equal to 30 m/s. For the
thick boundary layer study, well defined discrete frequencies do not appear consistently until the approach
flow velocity reaches 35 m/s. The magnitude of the discrete peaks and the shape of the spectra are also
somewhat affected by the thickness of the boundary layer.

Conclusions

Multiple discrete frequency tones often occur for cavities with overhangs at the mouth entrance. The
tones can be associated with fluid-dynamic resonance and transverse modes within the cavity. An additional
discrete frequency tone has been identified and may be the result of other cavity modes unique to this cavity
geometry.

The thickness of the boundary layer at the cavity entrance influences the onset of instability. Thinner
boundary layers produce resonance at lower approach flow velocities than thick boundary layers. The peak
sound pressure level and the shape of the spectra are also somewhat affected by boundary layer thickness.
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Figure 3. Sound pressure level data for the thin boundary layer study.

140 A

130

120

110

SPL (dB)

100 -

|——26.8 m/s|
l ...... 30 m/s
wawaano: 40 /S
—---=50m/s

—60 m/s

70

0 1000

T T T

2000

Frequency

3000 4000 5000

(Hz)

Figure 4. Sound pressure level data for the thick boundary layer study.
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Table 1. Peak sound-pressure levels measured for the thin boundary-layer studies. Bold numbers
are associated with fluid-dynamic resonance and italic numbers are associated with transverse
cavity waves. The origin of the other tones is unknown.

Approach Velocity (U,) Frequency Amplitude Convection Speed (u)
(m/s) (Hz) (dB) U
0,t
60 2096 137
2288 123 0.45 U,
50 1824 144 0.43 U,
3648 111
40 1760 126 0.52U,
30 1264 105 0.49 U,
1664 95
3520 90
20 768 83 0.45 U,
1872 89
2368 89
2864 82

Table 2. Peak sound-pressure levels measured for the thick boundary-layer studies. Bold numbers
are associated with fluid-dynamic resonance and italic numbers are associated with transverse
cavity waves. The origin of the other tones is unknown.

Approach Velocity (U,) Frequency Amplitude Convection Speed (u)
(m/s) (Hz) (dB) U
0,0
60 2000 144
2288 121 0.45 U,
50 1824 134 0.43 U,
2016 113
2848 106
3552 111
40 1520 110 0.44 U,
1632 112 or 0.48 U,
400 103
30 No well defined
peaks
26.8 928 97
1168 99 0.51 U,
1890 103
1984 101
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DISCONTINUOUS SPECTRAL ELEMENT SOLUTION
OF AEROACOUSTIC PROBLEMS

Patrick Rasetarinera, DAVID A. KOPRIVA! and M.Y. Hussaini'

Program in Computational Science and Engineering
The Florida State University, Tallahassee, FL. 32306

1 Introduction

In this paper, we present solutions to the Problem 1, Category 1 and Problem 1, Category 3
benchmark problems. Both problems are characterized by multiple length scales. The first describes the
propagation of acoustic waves in a nearly choked quasi-one-dimensional, converging-diverging nozzle.
In the throat portion of the nozzle the acoustic wavelengths are an order of magnitude smaller than
elsewhere. The second problem models the acoustic response of an airfoil to a gust where the scales
include the airfoil cord length, the incident gust wavelength and the extent of the mean flow.

We solve these multiple scale problems with a discontinuous spectral element method (DSEM). Spectral
element methods in general are high order, flexible extensions of the spectral collocation method [2].
Like finite volume or finite element methods, complex geometries are subdivided into multiple elements.
Within each element, the solution is approximated by an orthogonal polynomial expansion. Local
resolution of the solution can be increased either by decreasing the size of the elements or by increasing
the order of the polynomials. The particular method used here is a high order spectral element version
of the discontinuous Galerkin method.

For the benchmark problems, discontinuous spectral element methods have practical advantages over
high order finite difference methods. They are designed to handle complex geometries, and can
use unstructured element grids generated by commercial mesh generation codes [4]. Though block
structured finite difference methods permit solutions in complex geometries, DSEM’s are not restricted
to meshes with smooth metrics. Also, DSEM’s approximate boundary surfaces to the same high order
as the solution. Cartesian mesh finite difference methods, for instance, do not.

Unlike high order finite difference methods, spectral element methods are compact. Their stencil resides
within an element, independent of the approximation order. This means that there are no ghost point
issues to complicate the approximation and implementation of boundary conditions. Also, elements
can be sized according to the needs of the solution without regard to the size of neighboring elements.

! Also Department of Mathematics and SCRIL
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This gives complete flexibility for changing element sizes, unlike high order finite difference methods
for which changes in mesh sizes by factors of two are most convenient.

Spectral element methods are robust. Unlike centered finite difference methods, they do not require
the addition of specially tuned artificial dissipation. Also, the discontinuous spectral element method
described here does not require special treatment of corner points. This means that special programming
is not needed for complex grid topologies or for sharp edges.

Finally, spectral element methods have spectrally small phase and dissipation errors. Waves can
propagate over a large number of wavelengths with a minimal number of points per wavelength while
keeping the flexibility described above. Examples can be found in the first and second CAA workshop
papers [5],[1]. An analysis of the phase and dissipation errors of the discontinuous Galerkin method
has also been performed recently in [3],[8]. In the first paper it was shown that for polynomial orders
of six to eight, only five to six points per wavelength are needed. If one uses polynomial orders between
8 and 16, only four to five points per wavelength are needed.

2 The Solution Approach

2.1 The Equations

To solve the benchmark problems, we approximate the nonlinear compressible Euler equations of gas-
dynamics in conservative form. For the Category 3 problem, the equations solved are

Q+V -F=Q:+F,+G, =S (1)
Explicitly, we have
p pu pv
| pu _ | ptpu o puv
@= pU F= UV G= p+ pv?
pe u(pe +p) v(pe + p)

We assume an ideal gas with pe = p/(y — 1) + (u? +v?)/2 and v = 1.4. The quantity S right hand side
of (1) represents a source term.

In the one space dimension Category 1 problem, eq. (1) reduces to

where
pA puA 0
Q= |puA| F=|(pu*+p)A S = | —pA,
peA u(pe+p)A 0
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2.2 The Discontinuous Galerkin Spectral Element Method

In two space dimensions, the region under consideration is divided into non-overlapping elements. The
elements can have a general quadrilateral shape to permit the accurate resolution of curved boundaries
with a minimum number of elements. Each element is mapped individually onto the unit square by an
isoparametric transformation. (See, e.g. [6].)

On each element, the mapping transforms eq. (1) to
Q+Ve F=Q+F+G,=8 (3)
The new variables are Q = JQ, S = JS and
F= yn ' — z,G G = —ye '+ 2:G

(4)
J(X,)Y) = xey, — xyye

The discontinuous Galerkin version of the spectral element method approximates the solution and the
fluxes by the N** order polynomials

~ N ~ ~ N ~
Q (5) 77) = Z Qu,u¢u,w F (5) 77) = Z FM,V¢M7V (5)
p,v=0 p,v=0

where ¢,, = (,(£) ¢, (n). The Lagrange interpolating polynomials, ¢;, are defined at the Legendre
Gauss quadrature points. The nodal values of the flux are computed from the nodal values of the
solution, i.e. ].E‘w' =F (Q”) No assumptions are made about the continuity of the solution, Q, across
element boundaries.

In this approximation, the residual is required to be orthogonal to the approximation space within an
element, so

(Qtv (bi,j) + (Vﬁ . F, ¢i,j) = (g, ¢i,j) ’L,j = 0, 1, ceey N (6)

where (-, -) represents the usual L? inner product.

Integration of (6) by parts gives

(Quu6is) + [ 60,8 - NdS — (B, Veoi) = (8,615) 17 =0,1,....N (7)
OF
where OF represents the boundary of the element.

To obtain equations for the nodal values of the solution, Qm, the integrals in (7) are replaced by
Legendre-Gauss quadratures, which have the property that

1 N
/U (5777) d§dn = Z v (fi,ﬁj) WiW; Vv € P2N+1,2N+1 (8)

NASA/CP—2000-209790 105



The replacement is exact provided that the element sides are straight. If the sides are curved, however,
an additional quadrature error is incurred, just as in the C? spectral element method [7]. The advantage
gained by using quadrature is that the mass matrix remains diagonal and trivially invertable. This
makes the use of high order elements practical and efficient for wave-propagation problems.

After some manipulation, the final approximation in two space dimensions is

dQi; |- (1) = ¢; (0) = (Gl y
pT lF(ljm) o, F(0,m;) o, %:FWT + o
9
e L) a0 s (56),]
G (& 1) 2= =G (& 0) == =) Guy=——| =5
[ w; w; ; S J
where the discrete inner product is the Gauss quadrature
N
(u,v)y = Zuiviwi. (10)
i=0

Note that if the approximating polynomial order is zero, (9) reduces to a first-order finite-volume
method.

The flux quantities F' (1,n;), F' (1,71;), G (&,1), G(&,0), in (9) represent the element boundary fluxes.
As in a finite volume approximation, the solutions are discontinuous at element faces. A Riemann
solver is used to compute a continuous flux at the element faces from the discontinuous solution values.
For the computations presented here, we have used Roe’s approximate Riemann solver [9].

The semi-discrete approximation, (9), is integrated in time by a low storage Runge-Kutta method.
Both third and fourth order methods are used.(Cf. [6])

2.3 Steady-State computation

For both the Category 1 and Category 3 problems, the steady solution is computed first. Once the
steady solution is found, the incident waves are imposed as boundary conditions. The splitting permits
the use of convergence acceleration techniques to get the steady-state. Here we use local time-stepping
[4]. We estimate that on the Category 3 problem, the computation of the steady-state is accelerated
by a factor of 30 using local time stepping.

2.4 Boundary Conditions

The use of the Riemann solver at element faces makes the imposition of boundary conditions simple.
Boundary conditions are implemented by specifying the external state as the input for the Riemann
solver [6].

In the two-dimensional problems, it is also necessary to implement radiation boundary conditions. In
this paper, we treat the outgoing pressure waves through a damping-layer procedure, which is easy to
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apply and inexpensive. The damping-layer approach sets the source term on the right of eq. (1) so that
sound waves are damped in time as they propagate toward the outer boundaries. Only the radiating
sound waves are damped, so the damping term is written as

0

o 0
v—1 0 (11)

D — Dss

S =

where p, is the steady-state pressure. The quantity ¢ is a ramp function that grows smoothly from
zero as the outer boundary is approached. We use two such ramp functions. The first increases the
damping radially as

_ ( r—r >” 12)

o(r)=2 E— (

where r is the radial direction, measured from the center of the airfoil. The rate at which the ramp
function increases, v was chosen to be either one or two. The second ramp function replaced the radial
direction with the boundary-normal direction within an element along the outer boundary. Using two
different ramp functions and varying ry and R,,.. permitted us to assess any contamination of the
solution by spurious reflected sound waves.

3 Solutions of the Workshop Problems

3.1 Category 1, Problem 1

Fig. 1 shows the distribution of the maximum acoustic pressure inside the nozzle. The solution was
computed with two meshes. The coarse mesh used 16 elements at eighth order in each for a total of
144 collocation points. A fine mesh solution with 300 points is used for comparison. The inlet portion
shows that there is only the transmitted wave, and that the wave amplitude is 5.47 x 107%. In the
throat section, we find a peak amplitude of 1.03 x 10~%. Finally, the exit section of the nozzle shows
reflected and incident waves. The mean value of the coarse grid solution in the exit portion of the
nozzle, which should be the incident wave amplitude, is within 0.4% of the exact.

At the top of Fig. 1 we show the distribution of the elements. The ability to adjust the element size
according to the resolution needs of the problem is an important feature of the method. It permits the
use of a minimum number of degrees of freedom to solve the problem accurately.

3.2 Category 3, Problem 1

For Category 3, Problem 1, we compute the unsteady aerodynamic and aeroacoustic response of a
single airfoil to a two-dimensional, periodic vortical gust. In this problem, the incident gust propagates
from infinity with the mean flow to the airfoil. At the airfoil surface, sound and vorticity are generated.
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Figure 1: Maximum acoustic pressure amplitude for Category 1, Problem 1. Plotted are coarse and
fine grid solutions. The element boundaries are marked at the top of the figure by vertical bars.

The sound propagates outward in all directions from the airfoil, while the vorticity propagates as a
vortex street off the trailing edge of the airfoil. We solve this problem in the total-field formulation: We
impose the gust as an external boundary condition and compute the time dependent flow as a periodic
steady-state of the full nonlinear Fuler equations.

Two important computational issues for this problem are the choice of mesh topology and the size of
the mesh. First, the mean flow must be well-resolved in the neighborhood of the airfoil. Unlike a pure
CFD calculation, however, it is also necessary to have uniform resolution in the far field with which to
represent the incoming gust, the expanding sound wave and the vorticity advected downstream from
the airfoil. These needs indicate that a grid formed by a conformal mapping would not be efficient, since
the conformal grid will produce large elements in the far field. For this reason, we use unstructured
grids. Figs. 2 and 3 show representative examples of meshes used about the airfoils.

The distance of the external boundaries from the airfoil also affects the solution. As in a CFD
calculation, the outer boundary must be far enough away so that the surface pressure is not affected.
An additional constraint is that the velocity in the external regions must be close enough to the uniform
free-stream value so that the assumption of setting the gust at the outer boundary as a plane wave is
accurate. For instance, we find that the mean flow velocity is within 2.5 % of the free-stream velocity
at about 7.5 chord lengths from the non-lifting airfoil. For the lifting case, on the other hand, it is
necessary to extend the mesh to 22.5 chord lengths in each direction to get a solution independent of
the outer mesh distance.

Two independently written DSEM codes were used to compute the solutions presented here. Code 1
uses elements with straight sides except on the airfoil surface. It parameterizes the airfoil by polar
angle 6, which gives better resolution in the neighborhood of the trailing edge. The damping layer in
Code 1 has a ramping function that grows in the element normal direction. Code 2 has the ability to
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Figure 2: Mesh topology for the non-lifting airfoil

Figure 3: Closeup of a mesh in the neighborhood of the airfoil.

use curved element boundaries on all elements, as shown in Fig.3. It parameterizes the airfoil surfaces
by arc length except near the leading edge, where polar angle 6 is used. The damping layer in Code 2 is
circular, as described in eq. (12). Both codes permit the use of variable order meshes so that the order
of the approximating polynomials can be adjusted locally to provide the desired resolution. The use of
the two codes permitted the assessment of the effects of the radiation boundary conditions, resolution
along the airfoil surface and element shape.
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Figure 4: Steady surface pressure for the symmetric airfoil as a function of distance along the horizontal,
scaled to the chord length.

3.2.1 Nonlifting Airfoil Solutions

The steady pressure on the surface of the symmetric airfoil is shown in Fig. 4. The grid used for these
calculations extended 7.5 cord lengths from the airfoil. The fixed order computation used 11** order
polynomials in all elements. The variable order computations used polynomials between six and 11,
arranged to approximate a uniform eight points per wavelength of the incident gust. The fixed order
calculation put 95 points along the airfoil surface. For the variable order cases, the Code 1 solution
used 59 points and the Code 2 solution put 55 points along the surface. The computed solutions are
compared to the FLLO36 solution used in the workshop overview comparisons. Note particularly that
the DSEM’s have no problem approximating the solution near the sharp trailing edge of the airfoil.

We first show solutions to the nonlifting airfoil for wavenumber k£ = 3. The acoustic response along
the surface is shown in Fig. 5. We find that the three solutions are consistent with each other except
near the leading edge. There, the peak pressure is sensitive to the resolution. In particular, the three
curves show that the lower the resolution, the lower the peak amplitude.

The computed acoustic intensity is shown in Fig. 6. Shown are the solutions corresponding to the
three solutions in Figs. 4 and 5 plus an additional solution computed on a mesh that extended 11.5
chord lengths in each direction. The damping layer in the larger calculation extended three wavelengths
beyond the others. The directivity patterns indicate that the radiation boundary conditions are not
significantly affecting the solutions. The small difference in the peak values, with variation of 7 % or
less, can be attributed to the difference in the peak values at the leading edge of the airfoil.

The Figures 4-6 show that the solutions, computed with different codes and different meshes give
consistent results. It is interesting to note, however, the different computational costs between using
the variable order and the fixed order meshes. For instance, Code 2 required 6.4 hours on an SGI
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Figure 5: RMS surface pressure for the symmetric airfoil and gust wavenumber k& = 3.
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Figure 6: Acoustic intensity at radius eight for the symmetric airfoil and for gust wavenumber k = 3.

Origin 200 to compute both the steady and time dependent parts of the solution using the variable
order mesh. The fixed order solution required 19 hours. The factor of three difference between the
two can be attributed to the factor of three larger time step that could be used by the variable order
approximation. The variable order approximation used lower order approximations in the smaller
elements found in the neighborhood of the airfoil, thus permitting a larger timestep.

Finally, we present results for the k = 1 case. The RMS surface pressure is shown in Fig. 7. The
acoustic intensity at four chord lengths is shown in Fig. 8. In both figures, we show solutions computed
using the requested gust amplitude of ¢ = 0.02 and an amplitude of € = 0.002 scaled to the amplitude
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Figure 7: RMS surface pressure for the symmetric airfoil with gust wavenumber k& = 1. Solutions shown
for the requested gust amplitude and one tenth the requested amplitude scaled by ten. The reference
solution is shown for comparison.
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Figure 8: Acoustic intensity at radius eight for the symmetric airfoil with gust wavenumber k£ = 1.

Solutions shown for the requested gust amplitude and one tenth the requested amplitude scaled by 100.
The reference solution is shown for comparison.
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Figure 9: Steady surface pressure for the lifting airfoil as a function of distance along the horizontal,
scaled to the chord length.

of the requested solution. Also included on each figure is the reference solution used in the workshop
overview. There is a significant difference between the reference solution and the solutions computed
here. The fact that the nonlinear computations at the two gust amplitudes match exactly indicates
that the differences are not due to nonlinear effects.

3.2.2 Lifting Airfoil Solutions

Finally, we present solutions to the lifting airfoil case for wavenumber k£ = 1. Figs. 9-11 show the results
compared to the reference solution. As above, the mean and RMS pressures along the airfoil surface
are in good agreement with the reference solutions. Again, as before, there are significant differences
in the acoustic intensity at a radius of four chord lengths.

4 Conclusions

In this paper, we have used two discontinuous spectral element codes to compute two of the acoustic
workshop benchmark problems. Practical features of the method used are the ability to vary the mesh
size and approximation order to resolve local solution features. The method is compact and robust,
and does not need the addition of artificial damping in the presence of sharp edges.

For Category 1, Problem 1, solutions were obtained by using small elements in the neighborhood of
the throat and larger ones away from the throat. This flexibility permitted an accurate solution with
only 144 collocation points, when compared to a reference solution with 300 points.
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Figure 11: Acoustic intensity at radius eight for the lifting airfoil with gust wavenumber k£ = 1.

Category 3, Problem 1 solutions were computed for k = 3 and k£ = 1 for the non-lifting airfoil, and for
k = 1 for the lifting case. Solutions using different meshes and damping layers were consistent with
each other, as shown in the £ = 3 non-lifting case. Surface quantities were in good agreement with
the reference solutions for both airfoils at £ = 1. The intensities at four chord lengths, however, differ
significantly from the reference solution. This difference cannot be accounted for by nonlinear effects.
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Validation of a High-Order Prefactored Compact Scheme on Nonlinear Flows
With Complex Geometries

RAY HIXON and Reda R. Mankbadi
CAA Group, ICOMP
NASA Glenn Research Center
Cleveland, OH 44135

Abstract

Three benchmark problems are solved using a sixth-order prefactored compact scheme (ref. 1)
employing an explicit 10th-order fier (ref. 2) with optimized fourth-order Runge-Kutta time
stepping (ref. 3) . The problems solved are Category 1, Problems 1 and 2; and Category 3, Prob-
lem 1.

In the Category 1 problems, the spatial accuracy of the scheme is tested on a stretched grid, and
the effectiveness of boundary conditions is shown. The solution stability and accuracy near a
shock discontinuity is shown as well. Also, 1-D nonlinear characteristic boundary conditions will
be evaluated. This work will follow the work in ref. 4.

In the Category 3 problem, a nonlinear Euler solver will be used that solves the equations in gen-
eralized curvilinear coordinates using the chain rule transformation. This work, continuing earlier
work on flat-plate cascades (ref. 5) and Joukowski airfoils (ref. 6), will focus mainly on the effect
of the grid and boundary conditions on the accuracy of the solution. The grids were generated
using a commercially available grid generator, GridPro/az3000 (ref. 7).

1) Category 1 Problems

In Category 1, the problems are solved using the quasi-1-D Euler equations, given in the con-
served variables as:

0 0 O 1l ] ]
AR bl m R,
u —_ =
DpD Dpu+p|:] AdXD pu 0
0E Q0 OuE+p) 0O, Ou(E+p) 0

The nozzle is the same for both problems, extending from -10<x<10 with the distribution:

2
0.536572 — 0.198086¢ ("2 (/0:6)

2
1.0 - 0.661514¢ (M2 0:6)

A(x) = x>0 2)

X<0

I
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Boundary conditions are set using characteristics at the inflow and outflow:

0 oL
0 2
O O Da—p—(l/C)—ED
ohg 8%
oL,0=0 9%_,%4 [ ©)
020 0 ax P%x o
OLsO0 O O
0 "0 0 9p,,0u O
O 3x PS%x O
0 O
which propagate at the speeds:
0 0O
oL,0 O 4, O
0 0 0 0
speed0 L, 0 = Du-cO (4)
o O O il
OL;0 OQu+cQ
o 0O

Note that in this formulation, the characteristics are not linearized about the mean flow.

1.1) Category 1, Problem 1

The problem to be solved is the upstream propagation of an acoustic wave through a transonic,
nearly choked nozzle flow. The mean flow is set as:

O=0 04 0O
0POo 0O+ 0
Dol =0o040 )
O _0O O 0
op Doutﬂow O 1/V O
The acoustic wave is set at the downstream boundary as:
5P 0 51l X
— tflow [ ]
Oul = e -10cos [°“—+t} (6)
E p,% E 1 E B)J 1-Mouttiow a

outflow

or
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w . 10
(L2)outtiow = ~28F 5 ——ASNE T —— *t (7)
R [ 1-M []

— Youtflow outflow

In this problem, the initial condition is set as the exact solution for isentropic flow at each grid
point, with the perturbation starting from the boundary at time= 0. The solution isrun through 40
cycles of the perturbation, when the data is taken.

Initialy, the problem was run with a uniformly-spaced grid until grid convergence was obtained
in order to determine the necessary spacing at x=0 (the nozzle throat). Thiswas obtained at 3201
equally-spaced points, or aAx of 0.00625. The minimum spacing was then set, and the grids were
stretched algebraically to a maximum Ax of 0.1 and were uniform to the boundary. The stretched-
grid solutions were then compared with the 3201-point solution for accuracy.

Figure 1 compares the solution obtained on the 251 point stretched grid with that of the exact
solution, while Figure 2 shows the grid spacing distribution as a function of x for the various
grids. The solution on thisrelatively coarse grid agrees very well with the exact solution.

0.00010 - 7
,,,,,,,,,,,, exact

—— Hixon and Mankbadi (251 points)

0.00008 |- .

0.00006 |- .

0.00004

maximum pressure perturbation

0.00002 - .

0.00000 : ‘ :
-10.0 0.0 10.0

Figure 1. Comparison of Maximum Pressure Distribution for 251 point Stretched Grid with
Exact Solution
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1.2) Category 1, Problem 2

The problem to be solved is the upstream propagation of an acoustic wave through a shock wave
in a convergent-divergent nozzle. The mean flow isset as:

and

dx

0 b 0 O 1 0
orQg 0 0
OuolO = [0 0.2006533 0 (8)
g _0O0 U O
OPOpow O Y O
Poutflow = 0.6071752 (9
The acoustic wave is set at the upstream boundary as:
0.14 .
0.12 |- |
v [
\\ | | |
\ | | ,/
0.08 - - g .
[ 9 //-5
\ Q o J
\ \\ o S
\ [P~ i
0.06 N 'S
v | )
\\ | / // §
0.04 \\ \\ | // '\/Q _
X TS
\ / /
\\\ }/,
0.02 A .
l //(,‘""
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-10.0 -5.0 0.0 5.0 10.0

Figure 2. Grid Spacing Distribution for Various Numbers of Grid Points
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Hp'H 51g X
_ O [_Kinflow
S U,E B 8% :LES”‘IBD|:(:I-+Minflow)-l-t:E (10)
gp Dinflow O 1D
-10
L) moeld ® O [—H}D 11
( 3)|nflow h + MinflowD B*) (1"‘ Minﬂow) B ( )

In this problem, the initial condition is set as the exact solution for isentropic flow at each grid
point, with the perturbation starting from the boundary at time= 0. The solution isrun through 40
cycles of the perturbation, when the data is taken.

As before, a uniform grid solution of 3201 points was run as a reference solution. The solution
that is presented has 201 pointsin the grid. Figure 4 compares the mean pressure with the exact
solution. Figure 5 compares the pressure perturbations between the stretched 201 point grid and
the exact solution. Figure 6 compares the outflow pressure history with the exact solutions. Note

0.00000

pressure perturbation

-0.00010
-1

exact
—— Hixon and Mankbadi (251 points)

0.0 0.0

10.0

Figure 3: Comparison of Instantaneous Pressure Perturbation for Category 1 Problem 1
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Figure 4: Comparison of Mean Pressure Distribution for Category 1 Problem 2

2e-05 exact solution
—— Hixon and Mankbadi (201 points)

le-05

Oe+00

perturbation pressure

-1e-05

-2e-05 ‘ ‘ ‘ ‘ ‘ ‘ ‘
-10.0 5.0 0.0 5.0 10.0

Figure 5: Comparison of Pressure Perturbation for Category 1 Problem 2
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Figure 6: Comparison of Outflow Pressure Perturbation Time History for Category 1 Problem 2

Figure 7: C-Grid used for Joukowski Airfoil (433 x 125)
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that, while there are oscillations around the shock, the filtering keeps this from contaminating the
solution downstream.

2) Category 3 Problem 1

2.1) Problem Description

In this set of problems, a two-dimensional simple-harmonic vortical gust convects past a 12%
thick Joukowski airfoil. The gust has the distribution:

Ugust = —€M %%cos(Zk(x +y-— Mt)) (12
Voust = €M %%cos(Zk(x +y— Mt)) (13)

Here, e=0.02 and k = 0.1.

......

Figure 8: Closeup of Cambered Airfoil Grid
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The mean flow at infinity is defined as:

< 9 o
1
o< e

(14)

p==(p")

<

whereM =0.5andy=1.4.

In the first test, asymmetric airfoil is used at a zero degree angle of attack. The second test used a
cambered airfoil (camber ratio = 0.02) at atwo-degree angle of attack.
2.2) Mathematical and Numerical Formulation

In this work, the nonlinear Euler equations are solved. In Cartesian coordinates these equations
are written as:

0Q , 0OE | OF _
3t +W+W =0 (15)

t

— 1 [Tl
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o

) -.._

~ N
\ N
:\L\ KJ\ A

AN
N

hY

A

\
Y SES /T /]
/

- ; A
=J—-T=' T ,K?L+ '\\
EHA |
pd 14 1

Figure 9: Effect of Trailing Edge Singularity on Instantaneous Pressure Contours (Cambered Airfail).
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where

Q= |PH (16)

2
E=|PU+p (17)

F= (18)

where
p = (v-DE- 3o +V'f] (19)

Since the Joukowski airfoil has a complex geometry that does not lend itself to Cartesian grids,
the equations were recast in generalized curvilinear coordinates. From previous numerical tests
(ref. 8), the chain-rule formulation was chosen as the most accurate form of the equations in three
dimensions. The chain-rule curvilinear Euler equations are written as.

0Q , 989E , andE  9EIF , andF _

0T O0xd% 0xon O0yoE dyon (20)

The time stepping method used was the low storage fourth-order nonlinear extension of HU’s 5-6
Low Dispersion and Dissipation Runge-Kutta scheme (ref. 9) by Stanescu and Habashi (ref. 3). A
time step of CFL = 1.5 was used for all calculations, giving 911 time steps per cycle of vorticity
for the medium-frequency case and 9110 time steps per cycle of vorticity for the low-frequency
case.

The spatial derivatives are calculated using the prefactored sixth-order compact scheme and
explicit boundary stencils of Hixon (ref. 1). At block boundaries, an 11-point explicit stencil was
used. A 10th order explicit filter (ref. 2) was used at every stage of the Runge-Kutta solver to pro-
vide dissipation.
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The grid used was a C-grid topology (Figure 7), extending at |east five chord lengths away in each
direction. The grid had 221 points on the airfoil and 106 points along the wake cut. In the normal

direction, 125 points were used. The grid was generated using the commercial package GridPro’.

For the calculation, the grid was split into three blocks: an airfoil block and upper and lower wake
blocks. The grid was clustered algebraically in the normal direction (An = .01) and near the trail-
ing edge point (Ax = .01), as shown in Fig. 8. A stretching ratio of 1.05 was used to a far-field
spacing of Ax = Ay = 0.106.

2.3) Initial and Boundary Conditions
For both cases the flow was initialized to the mean flow with the vortical gust superposed:

P(xy,0) = p
u(x,y,0) = U+ugust(x, y, 0)
V(X’ y! 0) = Vgust(x’ y’ 0) (21)
pP(x,y,0) = p

At the wall, Hixon’s inviscid curvilinear wall boundary condition (ref. 10) was used, modified to
set the normal momentum to zero at the wall at each Runge-Kutta stage.

Figure 14: RMS Pressure Disturbance Contours
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At the inflow boundary, the acoustic radiation condition of Tam and Webb (ref. 11) was used on
the outgoing perturbations. For example, the outgoing u-velocity perturbation was defined as.

uoutgoi ng = Ugc— u- ugust (22)
At the outflow boundary, Tam and Webb’s radiation outflow condition (ref. 11) was used with no
correction for the outgoing vortical gust.

At the trailing edge point on the airfoil, the C-grid topology defines the airfoil geometry incor-
rectly, causing numerical inaccuracy. While an O-grid geometry would define the trailing edge
geometry properly, the C-grid was chosen due to the excessive number of grid points that the O-
grid would require to accurately resolve the sharp trailing edge.

At the trailing edge, an upper and lower wall condition is calculated, and averaged to make the
trailing edge point single-valued. This averaging, and the discontinuity in the boundary condition
on the surface line asit enters the wake, causes aloss of accuracy near the trailing edge. To reduce
the effect on the global solution, points were clustered near the trailing edge as shown in Fig. 8.
Figure 9 shows the effect of the averaging on the pressure contours near the trailing edge of the
cambered airfoil. The effect was much stronger on the cambered lifting airfoil than on the sym-
metric nonlifting airfoil.

2.4) Results

The compact code was run until the lift coefficient settled to a ssmple harmonic state, correspond-
ing to a nondimensional time of 210, requiring 72 hours on a 2-processor SGI Octane. As
expected, the nonlifting airfoil case converged faster; the lifting airfoil case results are still chang-
ing very dlightly.

The mean pressures on the airfoil are shown in Figure 10. The effect of the trailing edge condition
is apparent in both figures; however, the effect is localized near the trailing edge. In both figures,
some oscillations are seen near the peak of the pressure curve; thisis due to marginal resolution of
the high gradients in both the flow properties and the change in grid spacing in the tangential
direction. However, the effect on the mean solution is minimal. It is seen that the lifting airfoil
peak pressures are consistently overpredicted; this is attributed to the relatively small computa-
tional domain.

Figure 11 shows the RMS pressure disturbance distribution on the airfoil. Again, some oscilla-
tions due to marginal resolution can be seen near the peaks of the pressure disturbance, and the
trailing edge condition has some effect on the solution on the airfoil. However, the code is pre-
dicting the changing pressure distributions due to the two geometries and different frequencies
very well.

Figure 12 shows the amplitude of the RMS pressure perturbation at a distance of four chord
lengths away from the centerpoint of the airfoil. Here the comparison is not as good as on the air-
foil surface; however, the results compare well qualitatively and the magnitudes are in the correct
range.
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Figure 13 shows the distribution of the mean pressure throughout the computational domain.
Note the lack of reflections at the boundaries. Figure 14 shows the RMS pressure perturbation
distribution. Inthis case, it is seen that the boundary conditions work well for the low-frequency
case, but there are reflections for the high-frequency case. It is not certain whether the degrada-
tion in dispersion performance near the boundaries due to the one-sided boundary stencils is con-
tributing to these reflections.

3) Conclusions

Four benchmark problems of the Third CAA Workshop were solved using a prefactored sixth-
order compact scheme with 10th order filtering. These problems tested the accuracy of the code
on stretched, curvilinear grids with nonlinear flows. In all cases, the code was robust and con-
verged well. In the one-dimensional problems, the code proved very accurate even in the pres-
ence of unresolved shock waves. 1nthe more realistic Category 3 problem, the solution shows the
correct trends for the different airfoil geometries and vortical frequencies.
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Abstract

The problems 1 and 2 in Category 1 (Internal Propagation), problem 3 in Category 3 (Fan Noise), and
problems 2 and 3 in Category 3 (Turbomachinery Noise in the Second CAA Workshop) are solved using
the space-time conservation element and solution element (CE/SE) method. The problems in Category
1 address the propagation of sound waves through a nozzle. Both the nonlinear and linear quasi 1D Euler
equations are solved. Numerical solutions are presented and compared with the analytical solution.
Problem 3 in Category 3 concerns the effect of the sweep angle on the acoustic field generated by the
interaction of a convected gust with a cascade of 3D flat plates. A parallel version of the 3D CE/SE
Euler solver is developed and employed to obtain numerical solutions for a family of swept flat plates.
Numerical solutions for sweep angles of 0°,5°,10°, and 15° are presented. Problems 2 and 3 in Category
3 from the Second CAA Workshop describe the interaction of a 2D vortical gust with a cascade of flat-
plate airfoils with/without a downstream moving grid. The 2D nonlinear Euler Equations are solved
and the converged numerical solutions are presented and compared with the corresponding analytical
solution. All the comparisons demonstrate that the CE/SE method is capable of solving aeroacoustic
problems with/without shock waves in a simple and efficient manner. Furthermore, the simple non-
reflecting boundary condition used in the CE/SE method which is not based on the characteristic
theory works very well in 1D, 2D and 3D problems.

1. Introduction

The method of space-time conservation element and solution element (abbreviated as the CE/SE
method) is an innovative numerical method for solving conservation laws. It is designed to be a
numerical method in the field of computational fluid dynamics (CFD). Computational aeroacoustics
(CAA) is one of its applications.

The space-time CE/SE method is distinguished from other methods by its very conceptual basis — flux
conservation in space and time. Simplicity, generality and accuracy are weighted in the development of
this method. Its salient properties are summarized briefly as follows. First, both local and global flux
conservations are enforced in space and time instead of in space only. Second, all the dependent variables
and their spatial derivatives are considered as individual unknowns to be solved for simultaneously at
each grid point. Third, every CE/SE scheme starts from a non-dissipative scheme and numerical
dissipation is fully controllable, which result in very low numerical dissipation. Fourth, the flux-
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based specification of the CE/SE schemes give rise in a natural fashion to extremely simple yet highly
effective non-reflecting boundary condition which is an important issue in CAA. This can be contrasted
to the complexity of nonreflecting boundary conditions necessary for traditional numerical methods. A
detailed description of this method and the accompanied analysis can be found in [1-4].

A variety of numerical tests have been performed previously to illustrate the accuracy of this method.
For the CE/SE Euler solver, highly accurate numerical solutions have been obtained for various flow
problems involving discontinuities such as shock waves, contact surfaces, and even their interactions|2].
Moreover, applications of the same Euler solver to computational aeroacoustics (CAA) problems reveal
that the accuracy of the results is comparable to that of a 4th-order compact difference scheme even
though the current solver is only 2nd-order accurate, and the nonreflecting boundary condition can be
implemented in a simple way without involving characteristic variables. Results show that the present
solver can handle both continuous and discontinuous flows very well[5-13].

In this paper, a quasi 1-D CE/SE Euler solver is used to solve the benchmark problem in Category 1
(Internal Propagation). Among the two proposed problems, one addresses the propagation of sound
waves through a transonic nozzle and another concerns shock-sound interaction in a supersonic nozzle.
For problem 1, both uniform meshes with constant numerical dissipation models and nonuniform meshes
with variable numerical dissipation models are used. Numerical results are presented and compared
with the analytical solution. A good agreement is achieved by using 401 stretched mesh points. For
problem 2, 101 and 201 point uniform meshes are used and excellent agreements with the analytical
solution are obtained. Further, the numerical solutions obtained by solving the linearized equations
are compared with those obtained by solving the nonlinear equations for both problems.

A parallel version of the 3D CE/SE Euler solver for the nonlinear equations is developed and employed
to obtain numerical solutions of problem 3 in Category 3. The acoustic field generated by the interaction
of a gust with a 3D cascade of swept flat plates is simulated at different sweep angles for the cascade.
Numerical solutions for sweep angles of 0°,5°,10°, and 15° are presented.

The vectorized 2D CE/SE Euler solver for the nonlinear equations is employed to solve problems 2
and 3 in Category 3 in the Second CAA Workshop. The acoustic field generated by the interaction of
a vortical gust with a cascade of flat-plate airfoils is simulated. For problem 2, numerical solutions at
both low and high frequency cases are presented. For problem 3 which has a sliding grid downstream
of the cascade, only the low frequency case is solved.

The CE/SE Euler solvers are explicit time-marching schemes. They are second-order accurate in both
space and time. The scheme has a 3-point stencil for 1D, 4-point stencil for 2D, and a 5-point stencil
for 3D. The 1D and multiple dimensional solvers share identical features. In the Euler solver, three
parameters «, 3, and € are used to specify the numerical dissipation. When a = = € = 0, the Euler
solver has no numerical dissipation.

2. Category 1: Problems 1 and 2
For the two problems in Category 1, the CE/SE quasi 1D Euler solver described in [13] for the nonlinear

equations is used to compute the steady-state solution of the nozzle flowfield. For the simulation of
acoustic wave propagation, both the linear and nonlinear quasi 1D Euler solvers are used under the
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same computational conditions. The two solvers are constructed for the linear and nonlinear quasi 1D
Euler equations in conservative form. They have the identical formulation except the time-marching
variables are different. Both the linear and nonlinear numerical solutions are presented. Numerical
solutions of the acoustic wave plotted in all figures are non-dimensionalized by its amplitude . In the
computations using a uniform mesh, the constant numerical dissipation model with € = 0.2, « = 0, and
[ =1 is used for both problems.

Prob. 1: Propagation of Sound Waves through a Transonic Nozzle

The first problem addresses the propagation of sound waves in a transonic nozzle, in which the local
Mach number of the flow near the throat may be close to sonic. The computation of sound propagating
through such regions presents a challenging problem. The area of the nozzle is
Al) 0.536572 — 0.198086 exp (—(ln 2)(0"”’—6)2) , >0 1)
x) = '
1.0 - 0.661514 exp (—(In2)(%)?) , = < 0.

In the uniform region downstream of the throat, the diameter of the nozzle is D and the main flow is
uniform with Mach number, M, of 0.4, speed of sound, a.,, and static density, p,,. Flow variables are
non-dimensionalized by using a., as the velocity scale, D as the length scale, D/a, as the time scale,
Pso as the density scale, and p.,a? as the pressure scale. Thus the mean flow in the uniform region
downstream of the throat is

p=1 v=04, p=1/14 (2)

The acoustic wave, with angular frequency w = 0.6, is described as

x
1— My

T

t F— - -
+t)|, v £ cos w(l_MOO

p=p =ecos|w( +t) (3)
where ¢ = 10~%. It is generated downstream and propagates upstream through the narrow passage of
the nozzle throat. The computational domain is —10 < 2 < 10. It is recommended that computations

use no more than 400 mesh intervals.

First, the steady-state solution of the nozzle flow is computed. The initial conditions are specified using
flow properties in the uniform downstream region. The back pressure (ppecr = 1/1.4) is specified at the
outlet, and the total pressure and total density are specified at the inlet. The other needed information
at both the inlet and outlet are obtained using extrapolation from their neighboring mesh points. The
steady-state solution obtained using a 401 point uniform mesh with C'F'L = 0.847 is shown in Fig. 1
and compared with the exact solution represented by solid lines. It can be seen that flow properties
are uniform in most region of the nozzle, but change dramatically near the nozzle throat.

After the steady-state nozzle flowfield is computed, the acoustic wave propagation can be simulated
using the same nonlinear Euler solver. The initial conditions are specified using the steady-state
solution of nozzle flowfield. The exit boundary condition is different from that used for computing the
steady-state solution. At the outlet, the time-marching variables are specified as

(u)j =p+p, (w)j=I(p+p)(v+v) (4)
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At the inlet, the non-reflecting boundary condition is enforced by setting
n+1/2 n n+1/2
()i = ()1 ()] =0, m=1,2,3. (6)

A detailed analysis of this nonreflecting boundary condition for 1D case is given in [6]. It is based on
flux extrapolation.

Different mesh sizes are tested in the current computation. First, uniform meshes with Az = 0.05 and
0.025 in the computational domain of —10 < z < 10 are used. Numerical solutions of the acoustic
pressure at t = 207" are shown in Figs. 2 and 3, respectively and compared with the analytical solution.
It can be seen that the peak values near the throat and the wave pattern upstream of the throat can
not be captured correctly using 401 uniform grid points, while a greatly improved result is produced
using an 801 point uniform mesh. The amplitude of the acoustic wave upstream of the throat however
is lower than that given by the analytical solution. Further, the corresponding solutions obtained
with Az = 0.0125 in the computational domain of —5 < x < 5 are shown in Fig. 4. Although the
peak values are still not the same as the analytical solution, the profiles of the p’ both upstream and
downstream of the throat agree very well with the analytical solution.

In order to reduce the number of grid points, a 401 point nonuniform mesh that clusters near the throat
is used. The ratio of the largest to smallest mesh interval is around 10 with Ax,;,, = 0.0047. The
variable €] and 3} described in Eq. (52) in [13], and constant v = 0 are used in the computation. The
acoustic pressure obtained at t = 207" with CF L = 0.9084 is shown in Fig. 5 which is nearly similar to
that obtained using an 801 point uniform mesh in the domain of —10 < x < 10. Further improvement
can be made in the future by reducing the numerical dissipation or using a more stretched mesh. Its
convergence to the time-periodic solution is shown in Fig. 6. Under the same computational conditions
and mesh, the corresponding solution obtained using £ = 1072 is plotted in Fig. 7 showing skewness
upstream of the throat. It can be concluded that the amplitude of the acoustic wave should be small
enough to avoid the nonlinearity when a nonlinear scheme is used to obtain a solution in the linear
regime. In the present computation using the nonlinear solver, the steady-state solution is converged
to 1077, and € = 10~* is used.

For the linear solver, the amplitude of the acoustic wave is set to 1, and the steady-state solution
obtained by the nonlinear solver is used in the computation. The same three uniform meshes used
for the nonlinear solver described above are tested with the linear solver. The linear solutions are
very similar to the nonlinear solutions. The solution obtained using an 801 point uniform mesh in the
domain of —10 < x < 10 is shown in Fig. 8 as an example. The nonlinear solution is slightly better
than the linear solution under the same computational conditions.

Prob. 2: Shock-Sound Interaction

In this problem, the same nozzle geometry from the previous problem is used, but here there is a
supersonic shock downstream of the throat. All quantities are non-dimensionalized using the upstream
values. The Mach number at the inlet, M., is 0.2006533 and the back pressure, ppecr, is 0.6071752.
Following the same steps described in the first problem, the steady-state nozzle flowfield is computed
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and used as the initial condition for the sound-shock interaction simulation. The acoustic wave is
described as

p=p =v =cesin |w( +t) (7)

x
14+ My
where ¢ and w have the same values as that in the first problem. At the inlet, the time-marching
variables are specified using Eqgs. (4) and (5), while at the outlet, for m = 1,2, 3,

(um)?+1/2 - (Um)?_l/g; (Umx)?—'_l/Z =0 (8)
are used as the non-reflecting boundary conditions.

Uniform meshes with 101 and 201 grid points are used for this problem. The steady-state solution
obtained using a 101 point uniform mesh is shown in Fig. 9 and compared with the analytical solution
represented by solid lines. Numerical solutions of the acoustic wave obtained using 101 and 201 point
uniform meshes are shown in Fig. 10 in which only the analytical solution of p' is plotted for a
comparison. The analytical solutions of the density and velocity are not available. It can be seen that
the solution obtained on a 101 point uniform mesh is very close to the analytical solution and that
obtained on a 201 point uniform mesh appears to graphically match the analytical solution. A very solid
convergence to the time-periodic solution is demonstrated in Fig. 11 for the coarse mesh. Further, the
acoustic pressure at the outlet in one time period is plotted in Fig. 12 along with the analytical solution
showing an excellent agreement. The linear solution is almost identical to the nonlinear solution which
is shown in Fig. 13 for a 101 point uniform mesh.

3. Category 3: Problem 3

This problem concerns the effect of the sweep angle of the flat plate on the acoustic field generated by
the interaction of a convected gust with a 3D cascade of flat plates. Consider a rectilinear cascade of
swept flat plates. The mean flow is assumed to be uniform and aligned with the x-axis. The mean flow
variables are inflow velocity, Uy, static density, ps, and static pressure, p,,. The inflow Mach number,
My, is 0.5. The chord length of each plate is ¢, and the gap-to-chord ratio, s/c, is 1.0. Flow variables
are non-dimensionalized by using a(the speed of sound) as the velocity scale, ¢ as the length scale,
¢/as as the time scale, py, as the density scale, and py.a? as the pressure scale. Thus the mean flow
is described in dimensionless variables as

p=1 u=05 v=0, w=0, p=10/1.4. 9)

The incident gust carried by the mean flow has x, y, and z velocity components given by
u' = —(vgky/ky) cos(kyx + kyy + k2 — wt) (10)

and
v = vg cos(kyx + kyy + k2 —wt), w' =0 (11)

respectively, where vg = 107* and k, = 5.5,k, = m,k, = 0, and w = 0.5k, respectively. The
corresponding period of the gust wave is T = 27 /w. It is assumed that p/ = p’ = 0 which enable
the gust to satisfy the linearized Euler equations. The gust is propagating from the inlet along the
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mean flow and will interact with the swept flat plates to generate acoustic waves. The whole flow field
including the acoustics, gust wave, and mean flow is simulated by solving the nonlinear Euler equations.
At t = 0, the time-marching variables, (um)?, in the whole domain are defined using the mean flow

variables, and (Umg)] = (Umy)} = 0 everywhere.

3.1. Boundary Conditions

With the gust superposed on the mean flow, the time-marching variables at the inlet(x = —6) are
described as:

(w)f =p, (u2)] =plutu), (u)j=pv+v), (w)j=pl+uw), (12)
n__ P p N2 "2 "2
(09 = =2 k) (o ) ) (13

The inlet values of (tme)?, (Umy)T, and (upm:)}

outlet(z = 4), the non-reflecting boundary condition is enforced by setting

are obtained by taking derivatives of (u,,)}. At the

()1 = ()72 () = ()P = ()P =0, m=1,2,3,4,5. (14)
The periodic boundary condition is imposed on planes y = —0.5 and y = 1.5, and the reflecting
boundary conditions are used on the flat plate surfaces and the top and bottom walls in the z-coordinate
direction. No grid points are located at the flat plate leading and trailing edges to avoid a singular
point.

3.2 Numerical Results

The flat-plate cascade sweep angle is varied to determine its effect on the acoustic field generated by the
interaction of a convected gust with the flat plates. Four sweep angles are studied here. A structured
200x20x26 hexahedral grid is used in the computational domain —6 < x < 4, —0.5 < y < 1.5, and
0 < z < 2.6. The parallel version of the 3D Euler solver is used with @ = 0,e¢ = 0.5, and § = 1.
A detailed description of the 3D Euler solver is given in [4]. The parallelization of the code will be
reported in another paper.

The numerical solution of the acoustic pressure non-dimensionalized by the amplitude of the gust wave
is plotted in all figures. The pressure distribution at some constant lines and pressure contours on -,
x-z and y-z planes are shown for sweep angles of 0°, 5°, 10°, and 15° in Figs. 14-17, respectively. It
can be seen that the acoustic field does not vary along the z- direction for 0° sweep angle. As the sweep
angle increases, the acoustic field yields more obvious variations along the z- coordinate direction. The
profile of the acoustic pressure at both the inlet and outlet planes changes gradually for various sweep
angles. The RMS pressure at the point (—5,0,1.3) near the inlet is plotted in Fig. 18 for different
sweep angles showing a decreasing trend with the increased sweep angle in the range of [0°,15°].

For the current parallelized code using an Origin2000 with 31 CPUs, it takes around 2 hours wall clock
time (56 hours CPU time) to run until ¢ = 207" for 624000 cells with a required memory of 763MB.
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4. Category 3: Problems 2 and 3(the Second CAA Workshop)

Problem 2 in Category 3 from the Second CAA Workshop concerns the acoustic field generated by
the interaction of a 2D gust with a cascade of flat plates. The convection of a gust and acoustic
wave are simulated simultaneously. Problem 3 is the same as problem 2 except a sliding grid is added
downstream of the plates. This tests the ability of a numerical scheme to model the acoustic wave and
the gust across a sliding interface typical of those used in rotor stator interaction problems.

Consider the cascade of flat-plate airfoils shown in Fig. 19. The mean axial flow is uniform with
prescribed inflow velocity, U,,, and static density, ps. The inflow Mach number, M., is 0.5. The
length of each plate is ¢, and the gap-to-chord ratio, g/c, is 1.0. Flow variables are non-dimensionalized
by using U, as the velocity scale, ¢ as the length scale, ¢/U,, as the time scale, po, as the density scale,
and p.,UZ as the pressure scale. Thus the mean flow is described in dimensionless variables as

p=1 u=1 v=0, p=4.0/14. (15)
The vortical gust carried by the mean flow has x and y velocity components given by
u' = —(vgky/ky) cos(kyr + kyy — wt) (16)

and
v = vg cos(k,x + kyy — wt) (17)

respectively, where k, = k, = w = 57/2 and 137/2 respectively for the two cases studied here. The
corresponding periods, T = 27 /w, of the gust wave are 4/5 and 4/13. It is assumed that p' =p' =0
which enables the gust to satisfy the linearized Euler equations. The gust is propagating from the inlet
along the mean flow direction and will interact with airfoils to generate acoustic waves. The entire flow
field is simulated using the full Euler equations. To avoid the nonlinear effect, vz = 107° is used in the
current computation.

4.1. Boundary and Initial Conditions

With the gust superposed on the mean flow, the time-marching variables at the inlet are described as:

(u)je =p (u2)j, = plu+u'), (u3)iy=plv+2), (18)
n _ D P N2 n2
(U4)j,k—ﬁ+§[( +u')? + (v +0')?. (19)

The inlet values of (u;)} and (umy )}, are obtained by taking derivatives of (uy,)7,. The non-reflecting
boundary condition is enforced by setting

(UM);’L}_I = (UM)?,;'c_lm’ (um:v)?,—lic—l =0, (umy)?,—lic—l = (umy)?jc_l/27 m=1,2,34 (20)

at the outlet. This non-reflecting boundary condition allows the flux to “stream” out of the spatial
domain smoothly. However, the numerical solutions so obtained at the inlet and outlet are not the

correct physical solutions. To accurately compute the required sound intensity, p? = % tf)OJ’T p2dt, at
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the inlet (x = —2) and the outlet (z = 3), a larger domain is used. The actual computational domain
is =2 —xy < <3+ 1y, where x, = 4/5 and 3/14, respectively for the two cases.

Periodic boundary conditions are imposed on the upper and lower boundaries, and the reflecting bound-
ary conditions described in [2] are used on the airfoil surfaces. The computational mesh shown in Fig.
19 is laid out in such a way that grid points are purposely not located at the airfoil trailing edges to
avoid a singular point. In Fig. 19, there are two sets of grid points, presented as solid circles and open
circles. They are used to show the difference in spatial location of grid points a half time step apart.

At t = 0, the time-marching variables ()}, (Ume)}y, and (umy)j, in the entire domain are defined
in the same way as that for imposing the non-reflecting BCs at the inlet.

4.2. Numerical Results and Discussions

In the following discussion, the number of grid points mentioned pertains to the region —2 < x < 3. In
all plots shown here, p’ is non-dimensionalized by dividing it by vg. The details of the 2D Euler solver
can be found in [2].

Numerical computations were performed using 301x121 uniform grid points for the low frequency case.
This results in a grid size of Az = 1/60, Ay = 1/30 with 24 grid points per wavelength in the z-
direction for the shortest wave. In the following numerical tests, e = 0.2, f = 1, and a = 0 are used.

To show the performance of the non-reflecting BCs at the inlet and outlet, the time history of the
acoustic pressure at point (—2, Ay/2) obtained using two different computational domains with the
same CFL (= 0.8) number is shown in Fig. 20. The corresponding data at point (3, Ay/2) are plotted
in Fig. 21. Figures. 20 and 21 reveal that the profiles of the converged solutions obtained using different
computational domains are very similar at both points. The size of the computational domain has a
small effect on the numerical solution. The pressure difference on the flat plate is plotted in Fig. 22(a)
and compared with the exact solution showing good agreement. The sound intensity, p?, at the inlet
and outlet are plotted with the analytical solution in Fig. 22(b). Some discrepancies are observed.
Several other numerical results obtained using high-order accurate DRP schemes have a similar or
bigger discrepancy with the analytical solution[14]. Contours of the scattered pressure at t = 2007 are
plotted in Fig. 23.

For the high frequency case, the CE/SE solutions of the pressure difference on the airfoil surface
obtained using 651x261 uniform grid points are plotted along with the analytical solutions in Fig.
24(a). The radiated sound intensity at the inlet and outlet are compared with the analytical solutions
and shown in Fig. 24(b). Contours of the scattered pressure at ¢ = 471" are plotted in Fig. 24(c).

In Fig. 25, the corresponding data are plotted for the low frequency case with a downstream sliding
grid. The grid speed is 5, and the moving distance is one Ay per At. No interpolation is needed at the
sliding interface, since the grid points are aligned at every time step. The computations use ¢ = 0.3,
B8 =1, and o = 0 with CFL= 0.8 and a 401x241 uniform grid in the domain of —2.8 <z < 3.8. The
computed pressure distribution at y = 0.5, 1.5, 2.5, 3.5 and pressure difference across the four flat plates
at t = 38T are shown in Fig. 26 and compared with those obtained with a stationary downstream grid
under the same computational conditions. It can be seen that the two solutions are identical.
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The present vectorized 2D Euler code was run on a Cray C90. For the low frequency case with a
301x121 uniform grid and CFL= 0.8, the CPU time was 28 seconds for one period, and a converged
solution at ¢t = 507 took 23 minutes and 39 seconds of CPU time and 2MW memory.

5. Conclusions

In Category 1, a satisfactory numerical solution is obtained using a nonuniform mesh with 401 grid
points for problem 1. An excellent agreement between the numerical results and the analytical solution
was obtained on a 101 point uniform mesh for problem 2. The non-reflecting boundary condition
works extremely well for 1D problems. In Category 3, it is demonstrated that the CE/SE method is
capable of solving 3D aeroacoustic problems in an efficient way. The results show a decreased RMS
pressure with the increasing sweep angle in the range of [0°,15°]. The Category 3 from the Second
CAA Workshop compares well with the analytical solution and the accuracy is comparable to those of
several high-order DRP schemes. The simple non-reflecting boundary condition works well for multi-
dimensional problems. In summary, it is demonstrated that the CE/SE method is capable of solving
aeroacoustic problems with/without shock waves in a simple and efficient way. No special techniques
are used for shock waves, and acoustics waves and shock waves can be captured concurrently within
the computational domain.
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Figure 1: The steady-state solution(401 point
uniform mesh) of the nozzle flowfield compared
with the exact solution represented by solid lines.
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Figure 2: Comparisons between the exact solu-
tion and CE/SE solutions obtained using a 401
point uniform mesh in —10 < z < 10.
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Figure 3: Comparisons between the exact solu- Figure 4: Comparisons between the exact solu-
tion and CE/SE solutions obtained using an 801 tion and CE/SE solutions obtained using an 801
point uniform mesh in —10 < z < 10. point uniform mesh in =5 <z <5.
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solid line: exact sol.
delta: 401 point nonuniform mesh.
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Figure 6: Time history of the acoustic pressure
at the inlet and outlet for a stretched 401 point
mesh in —10 < z < 10.
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Figure 5: The CE/SE solutions of the acoustic
wave p' /e at t = 207 using a 401 point nonuni-
form mesh with variable €} and 3}'(e = 107%).
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Figure 7: The CE/SE solutions of the acoustic Figure 8: Comparisons between the exact solu-
wave p'/e at t = 20T using a 401 point nonuni- tion and CE/SE linear solutions obtained using
form mesh with variable €} and 3}'(e = 1079). an 801 point uniform mesh in —10 < z < 10.
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Figure 9: The steady-state CE/SE solution(101
point uniform mesh) of the supersonic nozzle
flowfield compared with the exact solution rep-
resented by solid lines.

Figure 10: The CE/SE nonlinear solutions of the
acoustic wave at ¢t = 407" using 101 and 201 point
uniform meshes.
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' ¢ : Figure 13: The CE/SE linear solutions of the
acoustic wave at ¢ = 407 using a 101 point
uniform mesh compared with the corresponding
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Figure 12: The CE/SE nonlinear solutions of the
acoustic wave pressure p’ at the outlet in one time
period for 101 and 201 point uniform meshes.
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ROTOR NOISE RADIATION
USING A FINITE ELEMENT METHOD

PATRICE MALBEQUI, CHRISTOPHE PEYRET AND GEORGES ELIAS
ONERA, CFD AND AEROACOUSTICS DEPARTEMENT
BP 72, 92320 CHATILLON, FRANCE

INTRODUCTION

In Computational Aeroacoustics (CAA), most of the numerical techniques solve the Euler equa-
tions using an eulerian representation of the aerodynamic field. In addition, the efficient Dispersion-
Relation-Preserving (DRP) finite difference scheme proposed by Tam [1] is usually applied for spatial
discretization and the Runge-Kutta method is used for the time integration of the linearized Euler
equation. In this paper, an alternative numerical technique is proposed. The fluid variables (i.e., pres-
sure, velocity and density) are first expressed with a mixed eulerian-lagrangian representation, using
the displacement vector. Such a representation leads to a second order propagation equation proposed
by Galbrun [2]. This wave equation is established without any restriction on the flow, so that it can
handle rotational flows. Moreover, it derives from a Lagrangian that provides exact flux energy as well
as a straightforward finite element implementation. A finite element method (FEM) is under develop-
ment at ONERA to solve the Galbrun equation. This paper presents the application of the FEM to the
Benchmark Problem-Category 2 on ducted rotor noise, proposed in the third CAA Workshop!. The
theoretical background of the Galbrun equation including the lagrangian formulation, acoustical energy
and preliminary results of duct propagation are summarized in the first section. The modelization of
the FEM for the Benchmark Problem on ducted rotor is described in the second Section. The third
Section illustrates the results.

1. THEORETICAL BACKGROUND

This section briefly presents the theoretical formulation of the Galbrun equation. It first recalls
the definition of the displacement vector and then gives the expression of the Galbrun equation, its
lagrangian density and the acoustical intensity (energy flux density) expressed with the displacement.
This section is to outline the formulation, but does not aim at providing demonstrations of the algebraic
formula. More details can be found in [2-6].

1.1. Acoustic displacement. Consider an infinitesimal fluid element inside a flow: between dates ¢
and 1, the element follows the path @(¢) resulting from the flow (solid line in Fig. 1). Now, reconsider
the fluid element, inside the flow at same dates and suppose the presence of a disturbance: the element
follows the path y(¢) resulting from the flow and the displacement caused by the disturbance (dashed
line in Fig. 1). The displacement vector is defined as:

o, t) = y(t) —=(1).

Date:
!Third computational Aeroacoustics (caa) Workshop on Benchmark Problems, Nasa Glenn Research Center and
Ohio Aerospace Institute, Brook Park/Cleveland, Ohio, November 8-10, 1999
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FIGURE 1. Displacement vector, @(t) is solid line and y(¢) is dashed line.

The so-called mixed representation of acoustics, developed by Poirée [3] in 1985, uses the displacement
vector to separate the acoustic perturbation inside the aerodynamic airflow.

1.2. Galbrun equation. Usually, the flow (po, po, vo) and the perturbation (p, p, v) are described with
Euler variables. In the case of a small adiabatic perturbation (p < po, p < po and v < ag). Poirée
shows that the usual eulerian variables, namely the acoustic pressure, density and velocity are related
to the displacement:

p=—poazV.§—§&.V po
(1) p=—pV.E=&. Vo

where d/dt = 0/0t + v .V is the total time derivative referred to the unperturbed flow. In practice,
these relations show that when computing the displacement field with a FEM, it is possible to return to
the standard eulerian pressure, velocity or density. Starting from the linearized Fuler equations, using
the lagrangian displacement and assuming acoustic propagation is isentropric (i.e ds = 0 in lagrangian
system), the formulation of mass, momentum and energy continuity leads to the Galbrun equation:
d*¢ 2
(2) G(§) :POﬁ—V@oaOV.é) ~ V(€. Vp)+ (€. V)Vp=0.
The Galbrun equation is a wave equation, based on the single displacement variable, established with-
out any restriction on the flow. As mentioned by Poirée [7], using both the relations (1) and the
Galbrun equation (2), few works attempted [8,9] to establish a wave equation based on single variable
(p, p,v), but the authors failed because algebraic expressions are too complex. Obviously, assuming an
homogeneous medium, the Helmholtz equation for harmonic solution is directly retrieved.

1.3. Lagrangian formulation. Recently, a lagrangian density of the Galbrun equation was found
by Elias [5]. Instead of expressing the lagrangian perturbation of the total energy of the flow (kinetic
plus potential energy), an heuristic approach is proposed to formulate the lagrangian density. The
lagrangian expression reads:

(3) L&) =5 m (%) S0} (V.EF (€. V) V&~ LE[Vp) €

Lagrangians satisfy the least action principle [10]. It states the integration in time and on the finite
volume V; (whose envelope is Sp) of L(&) is extremum:

o0

] (o)

— 00
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For the Lagrangian expression (3), it turns to:

o0

(5) / (//VOG(Q.5§dV—|-//SOb(§).5£dS> dt =0,
where:
(6) b(E) = pn -+ po (v0. m)

E .
In pratice (5) associated with (6) is solved using a Finite Element Method (FEM). As a standard

numerical technique, the FEM implementation is not described in this paper. The FEM leads to a large
complex sparse linear system to solve the displacement at the mesh nodes.

1.4. Acoustic power and intensity. Conservative expressions of acoustic power and intensity were
also derived by Elias [5] from the Lagrangian density (3) using properties of Lagrangians [10]. These
expressions read:

_ po d§ d§ d§ 2 2
7) w00 VO o (6 T
C(0g de o€
(8) t=po (E%) vo—l—pa.
with:
(9) aa—%vi:o.

The same expressions were also established by Godin [4] using the reciprocity principle in non uniform flow.
In contrast with usual formulations based on eulerian variables, these expressions satisfy the energy
conservation law (9) without any additional source terms. Although the intensity in equation (8) can
not be expressed with the acoustic velocity, its accuracy has been proved for basic duct problems
including high subsonic shear flows (Mach number up to 0.9), in the low frequency range.

1.5. Preliminary Results. In the case of acoustic propagation in a circular lined duct in the presence
of a shear flow, the Galbrun solution is computed with the FEM and compared to the exact solution
obtained by the resolution of the Lilley equation. Both real parts of the pressure field solutions are
plotted in figure 2 and are found in good agreement. The in-duct flow is similar to the one used by
Eversman for duct acoustics studies [11]. This result illustrates the capability of the Galbrun equation
to handle rotational flows. More details about the validation can be found in [12].

2. FEM MODELIZATION OF THE BENCHMARK PROBLEM ON DUCTED ROTOR

The Benchmark problem is detailed in the Proceedings of the third CAA workshop, so only the
main variables are presented. The governing equations are the linearized Euler equations. The duct
geometry is axisymetric with a constant radius b and rigid walls. The duct length from the rotor plane
to the duct exit is 8b. The distribution of rotating body force on the rotor plane is described with
the m*-order Bessel function Jin(AmNT) , where A, v is the N root of J/,,, and N the radial mode
number. A harmonic time dependence exp(—jmft) is assumed, where ) is the rotational speed. No
mean flow is considered in the fluid.
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FIGURE 2. Re(paa(r,z)) at frequency 1350 Hz computed with Lilley equation on the

upper plot and Galbrun equation on the lower plot. My = +0.5, boundary layer thickness
of the flow: 0.15 m, reduced impedance of the liner: 1 — j.

2.1. Mesh. For this FEM application, the formulation (5) is transformed into the frequency domain.
The cylindrical coordinates (r,0, z), with a exp(—jm#é) dependence of the variables are also used to
reduce the three-dimensional problem to a two-dimensional problem. Figure 3 shows the mesh of the
fluid used for the computations. The fluid is meshed with non-structured linear elements. To obtain
an accurate solution, the size of the elements is of the order of A\/6. In practice, for the frequencies
to be considered, about 23 145 elements are required. Both the in-duct fluid and the fluid in free-
field are meshed with conventional finite elements. The coupling between the FEM, with conventional
elements in the duct and close to the exit, and the wave envelope technique [13] in the far-field is under
development. The duct surface and the rotor plane are also meshed with linear elements (i.e., line
segments for the two-dimensional modelization).

2.2. Boundary conditions. At the duct entrance, z = 0, the acoustic pressure described by the
m'™ order Bessel function is considered as the acoustical source. The corresponding values of the
displacement is obtained using equations (1) in the absence of mean flow and the linearized Euler
equations for the mass conservation:

E=1| & | = W —J.TP )
fz _]kzp

where k. is the axial wave number. On the rigid walls of the duct, the normal displacement is fixed to
zero. Finally, on the boundary of the exterior domain, a non-reflective condition is needed to properly
simulate the Sommerfeld radiation condition (i.e., to avoid numerical reflections). Using the Euler
representation, an anechoic termination based on the wave impedance (the pressure over the normal
acoustic velocity) can be used for this purpose. A similar condition is applied with the displacement
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FIGURE 3. Meshing of the geometry

variable using equations (1) together with the linearized Euler equations:

Vo
b= jpomo Vo §.
Q/k,
Z
3. RESuULTS

The two rotational speeds € = 0.85 (subsonic tip speed) and € = 1.15 (supersonic tip speed) are
proposed in the Benchmark Problem, with an 8-blade rotor (m = 8). Note that € is a nondimensional
variable with respect to the ambient sound speed and the duct radius. Using the standard modal
analysis of the duct acoustics, the in-duct pressure is:

p(r,0,z,t) = J(Am 1) exp[—7(mQt — mb + k.z)],

and the dispersion relation is:
k* = k2 + k2,

where k is the total wave number (k = mQ), kr is the transverse wave number and k. is the axial wave
number. In case of rigid walls, the transverse wave number is equal to A,, . For the two rotational
speed £ = 0.85 and 1.15, k. is purely imaginary and equals 76.84 and 2.9, respectively. The mode
(m =8, N =1) at these frequencies is evanescent. The attenuation, in decibels, of the sound pressure
level along the duct is 20/log,, Im(k.). At the speed © = 0.85 and 1.15, the attenuation is 60 dB
and 25 dB per radius, respectively. Many computations have been performed using several meshes to
propagate the induct pressure field. However, at present time, the FEM does not provide suitable results
for these configurations, including strongly cut-off frequencies. Keeping the same duct geometry and
the same mode number (m =8, N = 1), additional FEM computations have been performed for a cut-
on frequency, ) = 1.7, corresponding to k., = 9.87. The real part of the pressure field and its amplitude
are plotted in 4. As expected, for a propagating spinning mode, at a fixed radius, the amplitude is
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constant in the duct. Moreover, the radiated field is characterized by a main lobe around the angular
location ¢ = 45 degrees. This result is in agreement with the Taylor and Sofrin prediction [14], where
the angular location is given by sin ¢ = kr/k.
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FIGURE 4. Supersonic tip speed Q) = 1.70, ducted rotor

4. CONCLUSION

The FEM based on the Galbrun equation is an attractive technique to solve the linearized Euler
equations. In contrast with other wave propagation equations, this equation is established without any
restriction on the flow. This is of interest to solve many CAA problems. In this paper, the FEM has been
applied to the ducted rotor noise configuration, proposed in the Third Computational Aeroacaoustics
Workshop on Benchmark Problems. At present time, the FEM fails to predict the far-field pressure for
the strongly cut-off frequencies. On the other hand, keeping the mode number and the duct geometry,
the FEM provides results in good agreement with the modal approach, for cut-on frequencies.
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‘Results of Benchmark Problems
for the Third Computational Aeroacoustics Workshop

Fang Q. Hu
Department of Mathematics and Statistics
Old Dominion University, Norfolk, VA 23529
E-mail: fang@math.odu.edu

I ntroduction

Numerical results for problems in Category 1, 2 and 5 are presented. Due to high resolution requirements
of these problems, high-order finite difference schemes are used. Both the spatial and temporal discretizations
have been optimized for obtaining low dissipation and low dispersion errors in computation. In addition,
Perfectly Matched Layers (PML) are used at all non-reflecting boundaries encountered in Categories 2 and 3.
The schemes used in the present work are modified from those for the benchmark problems in the previous
two CAA workshops [1,2]. Further details of the algorithms are referred to [1] and [2].

Propagation of sound waves through transonic nozzle

In this problem, an acoustic wave is introduced at the nozzle exit region and the sound wave that travels
upstream through the transonic nozzle is to be calculated. The amplitude of the incoming sound wave is
1075, which is very small compared to the mean values of the flow. The nozzle flow is modeled by the
one-dimensional Euler equations with variable nozzle area. In the present work, the acoustic wave will be
computed directly by solving the non-linear governing equations, rather than solving the linearized equations.
This makes it harder to compute the acoustic waves. The challenge is whether the small amplitude wave can
still be captured in the computation.

The governing equations are

Op Op ou  pudA

ot T or TPar T A e 1)
ou ou 16p

0 0 0 0A

S A 3)

ot oz 0z A Oz

where p is the density, u is the velocity and p is the pressure. A in (1)-(3) is the nozzle area and is a function
of x given by

A(z) = | 0536572 = 0.19808¢~ 2)(5)" 450
1.0 - 0.661514e-m2(55) 4 <0
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The computational domainis —10 < = < 10. An upstream propagating wave with very small amplitude
isintroduced at the nozzle exit region in the form of
=10"°| —1 | cos [w( T4 t)} 4)
1-M
acoustic

P
n
D 1

When propagating upstream, part of the wave will be reflected at the nozzle throat and the other part is
transmitted which travels to the left and leaves the inlet region of the nozzle. The mean values at the exit
region are given,

1

ﬁezit - 107 Uegit = 047 peazit - 1/7

To solve (1)-(3), boundary conditions are needed at the nozzle inlet and exit. At theinlet, thereisaonly
left traveling wave and at the exit, there are left traveling incoming wave (given in (4)) and its reflection by
the nozzle throat, a right traveling wave. The necessary numerical boundary conditions can be obtained in
several ways. One approach is to rewrite the non-linear equations (1)-(3) in characteristics form and add the
incoming wave as sourceterms[3, 4, 5]. In the present work, we derived the boundary equations based on the
characteristics of the linearized equations of (1)-(3) since the wave amplitude is very small. We note that the
linearization is only applied at the exit and inlet regions where the nozzle area is constant.

let

p=p+p
u=1u+u
p=p+7p

where an overbar indicates the time-independent mean value. Since now A = constant, we linearize equa-
tions (1)-(3) and write in the matrix form,
pl
) ( ) 5
pl

o (" P
a UI’ + a_
p 0 vp
The coefficient matrix can be easily diagonalized,
/ 1 £ =z i 0 0 1 0 —-Z /
P woo u e P
%u’+0p—fz—pia 0 u+a O o%gaﬂu’zo (6)
P 01 1 0 0 a-—a 0o~ 1 T\
where @ = \/% is the speed of sound and @, @ + @, @ — a are the eigenval ues.
Boundary conditions can now be formulated using (6). At theinlet, let

S K
SR

S~ O

— /
P = Pinlet T P
— '
U = Uiplet + U

D = Dinlet + p,
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where o/, ', p’ arethe out-going (traveling to the left) waves. The equationsfor ', ', p’ arefound by keeping
only the negative eigenvalue in the characteristics form (6), namely « — a. It follows that

/ = = — I — P !
ap _ (uinlet - ainlet)pinlet au Uinlet — Ainlet ap o

- = =0 7

at 2dinlet 837 2C_Lzznlet 837 ( )
8, _'ne__inea, _'ne__inea,

O | Uinlet — Gintet O Uintet — Gintet 0P _ (8)
ot 2 ox 2Dintetbinter O

a_pl . (ﬂinlet - dinlet)ﬁinletdinlet a—u/ Uinlet — Qinlet a—p/ -0 (9)

ot 2 ox 2 ox
Similarly, at the outlet, we decompose the variables as

p= ﬁezit + pa + Pl
U = Uegit + Uq T+ ul

P = Pezit + Da +p,

where p,, u, and p, are the incoming wave as specified in (4) and p/, «' and p’ represent the right traveling
out-going wave (reflection by the nozzle throat). By only keeping positive eigenvalues in the characteristics
equations (6), namely u and u + a, we get following equations,

a_ﬂl + aezita—pl + (aexit +ﬁdexit)ﬁea:it a_u N ﬂeazitﬁ; ELeazit a—p/ _ 0 (10)
ot Ox 2041 Ox 2a;,, Ox
a ' _ezi _ea:' a ' _ea:' _ezi 8 i
ou | Uegit + Qeait OU u_zrl—_a t_p:() (11)
ot 2 Ox zpea:itaezit Ow
a_p, (aexit + deazit)ﬁea:itdea:it au/ ﬂem’t + ELeazit a—p/ -0 (12)

ot 2 ox 2 ox

In the present calculation, Euler equations (1)-(3) are applied in —8 < = < 8. Theinlet and exit boundary
conditions, (7)-(9) and (10)-(12), are applied in —10 < x < —8 and 8 < x < 10 respectively, as shown in
Figure 1. The partitioning for these domains is somewhat arbitrary, so long as the nozzle areas are constant
inside the boundary zones.

The spatial discretizationsis carries out using a non-uniform grid with Ax,,,;, = 0.0125 and Ax,,,., = 0.1
and a total of 381 grid points. The central differencing scheme used is the same as that of [6]. The time
integration is carried out by the Low Dissipation and L ow-Dispersion Runge-Kutta scheme (LDDRK56 [7])
with atime step At = 0.0076.

Theinitial values of the density, velocity and pressure are formed by asimple linear distribution, as shown
in Figure 2 in dashed lines. Astime increases, the solution adjusts itself for the given nozzle shape and mean
values at theinlet and exit. The solid linein Figure 2 show the the density, velocity and pressure distribution at
t = 200. Figure 3 shows a time sequence of the pressure distribution.Thisis to demonstrate that the transient
responses propagate out of the computational domain very effectively. Figure 4 shows the pressure as a
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function of time at x=-8, 0 and 8 respectively. Clearly, time periodic solution is reached after about ¢ = 100.
In the present calculation, the acoustic wave is computed directly from the non-linear equations (1)-(3) and
together with the mean flow. It showsthat despite the small amplitude of the wave, the scheme can still capture
the wave. After subtracting the mean value, the acoustic wave is found and the wave envelope is shown in
Figure 5.

Shock-Sound I nteraction

In this problem, the pressure at the exit is specified such that a shock is formed inside the nozzle. The
mean velocity at the inlet is now given as ;,,.; = 0.2006533 and the pressure at the exit is,

Dezit = 0.6071752

The governing equations are the same as that in the previous section, namely (1)-(3). Anincoming wave
isgivenintheinlet in the form of

P 1 .
u =10"°| 1 |sin [w(l v t)]
acoustic

P 1

Numerically, this problem is solved in a similar manner asin the previous one. At theinlet region, we let

P Pinlet '
U - Uinlet !
p Dinlet p’

and o/, v’ and p’ are solved using (7)-(9). At the exit region, we let

Pa
Ug,

Pq

+ +

p Dewit o
U | = | Uegit | + u'
p Pewit P

and o/, v’ and p’ are solved using (10)-(12).

Time history of pressure variation in x is shown in Figure 6 which exhibits in detail the formation of the
shock. The final profiles of density, velocity and pressure are given Figure 7. Clearly, there are oscillations
near the shock. Since a central difference scheme is used in the present calculation, the oscillations near the
shock are not unexpected. Artificial dissipation terms have been introduced in the discretized equations. The
magnitude of the artificial viscosity used at each grid point is set to be proportional to the maximum variation
of the solution near the point. Again, non-uniform grids are used with Az,,,;, = 0.003125 and Az, = 0.1
with atotal of 617 points. As aresults, the oscillations near the shock are limited to a very narrow region as
shown in Figure 7.

The emphasis of the current calculation is to see whether the small acoustic disturbance can still be accu-
rately computed despite the inaccuracy near the shock. The results are satisfactory. Time periodic solutions
are obtained after around ¢ = 80 as shown in Figure 8 where pressure as a function of timeat z = —8, 0
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and 8 are given. The small acoustic wave is again captured directly from the non-linear equations (1)-(3). By
subtracting the numerical solution by its mean value, wave envelop is found and shown in Figure 9. We see
that despite the high spike of the wave near the shock, the transmitted and reflected sound waves are quite
accurate.

Rotor Noise

In this problem, sound generated by an 8-blade rotor is simulated. Two cases are considered. The first
is an open rotor and the second is a ducted rotor. The rotor is modeled by introducing forcing terms to the
governing equations as specified in the problem,

8u _F

ECE

0 10p __
[

D u v wo__
8t+8$+8r+ +r8¢ 0

(13)
where the forcing terms are given as follows,

E, Jm()\ ) —(In2)(10z)?

F, | =Re{| 0 eim(@— )

Fy Jn(Amr)re” (In2)(102)?
Here, m represents the number of blades. Equation (13) is further reduced to a 2-D problem by factoring out

the ¢ dependency of the solution,

= Re eme

"N e g
& 2

and we get, in complex variables,

%z; gp _ S(r)e—(ln2)(10x)26—imﬂt
ov p —

at T ‘

ow + zmp — TS(T)ef(IHZ)(IOJ:)ZefimQt

g~ ou ov ] tmw
ot to o Tyt =0

(14)

where

Jn(Amnr), 7 <1
S(T):{ (ON) r>1

in which J,, is the Bessel function of order m and \,,,x is the Nth root of J! . For the problem specified,
m=8andN = 1and \g, = 9.64742.
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Open Rotor

For the open rotor case, the computational domain of [—9,9] x [0,9] is shown in Figure 10. Spatial
derivatives in (14) are discretized by a 7-point optimized central difference scheme (as in the DRP scheme
[5]) using auniform grid of Az = Ay = 0.05. Thetimeintegration is carried out by the Low-Dissipation and
L ow-Dispersion Runge-Kutta scheme (LDDRK56 [7]) with atime step At = 0.025. In addition, atenth-order
explicit filter is applied throughout the computational domain [2,9].

Perfectly Matched Layer (PML) equations are used at non-reflecting boundaries of the problem shownin
Figure 10. The width of the PML domainis 1. Inside the PML domain, the pressure p is split into two parts
and the following equations are solved:

D =pi+p
Op1 ot
B o+ —=0
ot PN T 5
9y 95 © imd
“r2 By — 4 — —0
ot +Op2+8r+r+ r

in which o, and o, are the absorption coefficients introduced for absorbing the waves that enter the PML
domain. The choice of the absorption coefficients follows a “matched” manner [8, 9]. At the right and the | eft
PML domainsin Figure9, o, = 0 and at thetop PML domain, o, = 0. At the corner regions, both coefficients
are not zero. Specifically, the magnitudes of the absorption coefficients vary smoothly inside the PML domain
as follows,

T — 2o\ 2
Oz = Omax

D

r—10\?2
Or = Omax D

where x, and r, are the location of the initial positions of the PML domain and D is the width of the PML
domain. In al caculations, o,,,, Az = 2.
At the centerliner = 0,

t=w=p=0

and singular termsin equation (14) are replaced by partia derivative terms using L’ Hospital’s Rule, namely,

P_0v @ _06 p_ 0
ro o’ or’r
ar=0.
Pressure contours are shown in Figure 11 (a) and (b) for €2 = 0.85 and 1.15 respectively. To show that
atime periodic state has been reached, the pressure as function of time at point (0, 8.5) is shown in Figure

12. We note that although the pressure contours show similar patterns of sound radiation for both cases, the
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intensities are quite different. The second frequency, 2 = 1.15, has supersonic tip speed and radiation is
stronger.

Ducted Rotor

For the ducted rotor, the computational domain is shown in Figure 13. The discretization process is
identical to the previous case except now an infinitely thin duct wall isplaced at r = 1 for —4 < x < 8.

When the rotor is placed inside the duct, very little sound will be radiated because both frequencies are
cut-off. Figure 14 shows the pressure contours at t = 10, 20,45, 100. It shows that the intensity of sound
radiation decreases dramatically after the initial transient state. Pressure history is shown in Figure 15 and no
time periodic solution is found.

Generation and Radiation of Acoustic Wavesfrom a 2-D Shear Layer

In this problem, a point source is placed inside a 2-D jet and acoustic radiation is to be computed. The
governing equations are the linearized Euler equations,

T )%+ A5+ )G+ f =0
ou/ _ 1 ! g,/
B T e T amer Tay? =0 (15)
L _L_opf
o uly) g +
’ _ / ’ _ n z2 2
)G+ G Gy = Ae TV cos()

In the present calculation, the variables are non-dimensionalized by the mean values at the jet centerline,
namely, the speed of sound «; for the velocity, p, for density and pjc@ for the pressure. The parallel mean
velocity profileis,

(ln2)(le=h)?
a(y) = 1 Mie ")y > (16)
M; [y <0

and the mean density is obtained by the Crocco’s relation. Mach number of the jet A/; = 2. The other
parametersare A =1, B =8, h=0.6 and b = 0.4.

The computational domain of [—8, 54] x [0, 12] isshown in Figure 16. Due to symmetry in the mean flow
and the source term, only the solution in the upper half plane is computed. Symmetry condition is applied for
P, v and p’ and antisymmetry condition is applied for v'.

Asindicated in Figure 16, supersonic and subsonic non-reflecting boundary conditions are treated differ-
ently. By (16), mean flow is supersonic for |y| < 1. At supersonic inflow, all variables are set to be zero
and at supersonic outflow, backward difference is used for all the spatial derivatives in (15). At subsonic
non-reflecting boundaries, the following PML equations are used [9],
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0 a0’ _ w!

8”1 +ouph +ay) g+ ay) 5 =0
pz + oyph + p(y)%—y + Z—ZU’ =0
aul + ogul + u(y)% + %%—’; =0

8“2 du l_
+ oyuh + w? =0

avl + o,v] + u(y)%’; =0
sz + o,v) + %%% =0
apl + o.p) + %1; =0

19 v’
ot Toyph+ 5, =0

(17)

where o, and o, are the absorption coefficients. A more detailed and general formulation for non-uniform
mean flow isgivenin [9]. The width of the PML domain is 2 at the top and left radiation boundaries and 4 at
the right outflow boundary for better absorption of the growing instability waves.

A uniformgridisused in z with Az = 0.1 whileanon-uniform grid isused in y for anincreased resol ution
inside the shear layer. Thegrid sizein y issuch that Ay = 0.025for0 <y < 2, Ay =0.05for2 <y < 3
and Ay = 0.1 for 3 < y < 12. Again, the spatial derivatives are approximated by the optimized 7-point
central difference scheme (DRP in [6]), time integration by LDDRK56 [7] and a tenth-order explicit filter is
applied throughout the computational domain for the elimination of short waves that are not resolved in the
discretization [9].

I nstantaneous pressure contours are shown in Figure 17 for the two frequencies specified in the problem,
Q = 0.287 (St—Zle“ = 0.14) and Q = 1.27 (St=0.6), respectively. Since the shear layer is unstable in
the low frequency case the excitation of the instability wave results in stronger sound radiation. Thisis also
seen in the instantaneous pressure profile adong y = 1 (the center of the shear layer), shown in Figure 18,
and p? along y = 10, shown in Figure 19. Indeed, in an earlier calculation where the values of 4 and b were
inadvertently interchanged, which resultsin alarger shear layer thickness, the growth of instability wave was
much smaller and the sound radiation weaker.
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Figure 1. Schematic of computational domain partitions.
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Figure 2. Spatial distribution of density, velocity and pressure at theinitial (dashed) and final (solid) stages.
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Figure 3. Time history of the pressure distribution showing the propagation of the initial transient varia-
tions.
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Figure 13. Computational domain for ducted rotor.
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Figure 14. Pressure contoursat ¢t = 10, 20, 35, 100.
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Abstract

The transonic nozzle transmission problem and the open rotor noise radiation problem are solved
computationally. Both are multiple length scales problems. For efficient and accurate numerical
simulation, the multiple-size-mesh multiple-time-step Dispersion-Relation-Preserving scheme is used
to calculate the time periodic solution To ensure an accurate solution, high quality numerical bound-
ary conditions are also needed. For the nozzle problem, a set of nonhomogeneous outflow boundary
conditions are required. The nonhomogeneous boundary conditions not only generate the incoming
sound waves but also, at the same time, allow the reflected acoustic waves and entropy waves, if
present, to exit the computation domain without reflection. For the open rotor problem, there is an
apparent singularity at the axis of rotation. An analytic extension approach is developed to provide

a high quality axis boundary treatment.

1. Introduction
Category 1, Problem 1 and Category 2 problems are solved by the Dispersion-Relation-Preserving

(DRP) scheme (Tam and Webb, Ref. [1]). Both problems are characterized by multiple length

scales. This is typical of most aeroacoustics problems. For this type of problems, the spatial resolu-
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tion requirements varies significantly from region to region in the computation domain. To provide
adequate computation accuracy locally, a multiple-size-mesh is used. The computation domain is
divided into a number of subdomains in each of which the mesh size is uniform. In each of the
subdomains the solution is computed by the DRP time marching scheme. At the mesh size change
boundaries special stencils are used. To advance in time, the scheme uses the local time step that
satisfies the local stability requirement dictated by the local mesh size. In other words, different size
time steps are used in different subdomains. This is possible because the DRP scheme is a multi-
level time matching algorithm. We will refer to the computing scheme as the multiple-size-mesh
multiple-time-step Dispersion-Relation-Preserving scheme. Recently such a scheme has been used
successfully to simulate the generation of screech tones from imperfectly expanded supersonic jets
(Ref. [2]) and the micro-vortex shedding phenomenon associated with an acoustic liner in a high
acoustic intensity environment (Ref. [3]). Presently, there are very few time marching computation
algorithms that permit the use of multiple time steps. This feature makes the DRP scheme ideal for

solving aeroacoustics problems.

2. Category 1, Problem 1

Since the amplitude of the incoming sound wave is very small, it is sufficient to look for a linear

solution of the problem. The mean flow solution of the nozzle flow is,

PuA=pru A,

P o_ P

Pt opr (2.1)
w9y p up 7P

- S o Gt S _ . rr

2+’y—1pzp 2+’7—1,0r

where subscript r denotes the reference station. We will use the uniform flow region at Mach 0.4 as
the reference station so that p, = 1, u, = 0.4, p, = % and A, = 0.536572. It is easy to find that
the Mach number at the nozzle throat is equal to 0.94. The governing equations for small amplitude

disturbances are,

dp | pudA Ju dp u dA du ap

at ad Pt e A T e 7Y

ou ou du du  Op

_Qu ,__Ou  _du  _ du  9p _ 2.9
p t—l—pu x+pudx+pudx+ax 0 (2:2)
%_I__ap dp v dA _Ou du

5 T Ug, T, T PutpT) P+ po - =0.
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In the uniform flow regions upstream and downstream of the nozzle throat, (2.2) reduces to

dp _0Ou _8,0_
o Par TV 0

Oou _ Ou 1@_

op _0Op _Ou
o VT TP =Y

(2.3) supports three independent wave solutions. They are the upstream propagating acoustic waves,

which may be written in the form,

P @ .
u|=|—¢ F( —|—t>, (2.4)

the downstream propagating acoustic waves,

- 1

p @ .
ul=| - | G|———-1], (2.5)
(pa) a+u
P 1
and the entropy wave,
P .
u| = 0| H(x—1ut), (2.6)

P 0

where F, G and H are arbitrary functions. @ = <Wj> is the local speed of sound.

2.1. Mesh Design

For an upstream propagating time harmonic acoustic wave of angular frequency w, (2.4) becomes

p = Re Ae WEE=ET0 ] (2.7)

Thus the acoustic wave length A is given by,

_ 2ra(l — M)

w

A (2.8)
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where M = % is the local Mach number of the mean flow. Formula (2.8) indicates that at the nozzle
throat with M = 0.94 the acoustic wave length is nearly ten times shorter than that in the Mach
0.4 uniform region of the nozzle. We will use the Dispersion-Relation-Preserving (DRP) scheme for
our computation. With a 7-point stencil, the scheme can calculate waves of wave length equal to
or longer than 7 mesh spacings with good accuracy. Based on these estimates and w = 0.67, a
computational mesh as shown in figure 1 is used for the calculation. In this figure, only the mesh
distribution from = = 0 to * = 10 is shown. Four mesh sizes are used. The mesh sizes are related
by Az, = 2"Axzg (n = 1,2,3). The finest mesh is at the nozzle throat region with Axzg = 0.0125.
There are altogether 359 mesh points, which is less than the maximum 400 mesh points stipulated

by the benchmark problem.

60A X, 21AX, 20AX, TTAX,
| | |
[ LI B [ [ |
=23 x=10.0

Figure 1. Mesh distribution from =0 to x = 10

2.2. Numerical Boundary Conditions

In the inflow region of the nozzle, there are only upstream propagating acoustic waves. The form of
the solution is given by (2.4). It is straightforward to show by differentiation that regardless of what

the function F' is, the waves satisfy the following relationship.

a |’ I I
gn u —(a—u)a—x u| =0. (2.9)

(2.9) is the inflow boundary condition. It is used to advance the solution in time at the last 3 mesh

points on the left of the computation domain.

In the outflow region, there could be three types of waves. They are the incoming acoustic waves,

the reflected acoustic waves and the entropy waves. We may, therefore, write

P Pout 1 T
ul = |uout | +¢ | —1 cos(w(l_M—l—t>>. (2.10)

p Pout 1

The second term on the right of (2.10) is the incoming acoustic wave given by the benchmark problem.
The first term represents disturbances that would exit the computation domain through the right

boundary. These disturbances are composed of the reflected acoustic waves and possible entropy
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waves (convected downstream by the mean flow). Thus by (2.5) and (2.6) we have,

Pout a* T 1
(pa) a+u
Pout 1

By simple differentiation, it is straightforward to find, on eliminating the unknown functions G and

H of (2.11), the following outflow boundary conditions,

apOUt apout
=—(1+M
ot (1+ M) ox
auout auout
= _ 2.12
ot (1+ ) ox ( )
a,Oout _ a,Oout _ apout
ot Ox Ox

(2.12) is used to advance the values of (pout, Uout, Pout) at the last three mesh points (the outflow
region) at the right end of the computation domain. Once these quantities are known, the values
of (p,u,p) are found by (2.10). Since a 7-point stencil is used, the stencils used to compute (2.12)
would extend beyond the first 3 mesh points into the interior region. In the interior region, the
values of (p,u,p) are advanced in time. To calculate the values of (pout, Uout, Pout) to support the
time advancement of the unknowns in the boundary region, (2.10) is again used. This arrangement
automatically generates the incoming wave in the outflow region and, at the same time, permits any

outgoing disturbances to leave the computation domain smoothly.

2.3. Numerical Results and Comparisons with the Exact Solution

To find the solution of the sound transmission problem, (2.2) is first discretized according to the DRP
scheme using the mesh as given in figure 1. At the mesh size change interface, special 7-point stencils
are used. These stencils are provided in the Appendix of Ref. [3]. Because of space limitation, they
will not be repeated here. The DRP scheme is a central difference algorithm. As such, there is no
intrinsic numerical damping. To assure that short spurious waves are eliminated so as not to pollute
the numerical solution, artificial selective damping is included as discussed in Ref. [4]. [5]. The

inverse mesh Reynolds number, Rgl, is taken to be 0.05 in the computation.

The DRP scheme is a time marching scheme. To start the calculation, the zero initial condition is

used; i.e., t = 0, p = u = p = 0 for all mesh points except the last three mesh points on the right
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boundary. This is the outflow boundary region. In this region, we set pout = Uout = pPout = 0 at t = 0.
The incoming wave is, however, not equal to zero. Since a time periodic state is to be found, such
a solution is attained after a long period of computation. In the present calculation, the incoming

wave is turned on slowly. Thus, in the outflow boundary region, instead of (2.10) we use

RIks

P Pout 1 T
ul = |uout | +¢ | —1 <1—e_ >cos w +t]+ . (2.13)
1—M
p Pout 1

where 7 is taken to be 107”

or five oscillation periods. The phase ¢ is to be adjusted such that the
cosine term is zero at the third mesh point from the right at ¢ = 0. This ensures that the initial

condition is continuous at the interface between the interior region and the outflow region.

On starting with initial condition (2.13) in the outflow boundary region and the zero condition in the
rest of the computation domain, (2.2) is solved by the multiple-size-mesh multiple-time-step DRP
scheme on the mesh as shown in figure 1. The maximum pressure envelope is measured after a time
periodic state has been achieved. It is shown in figures 2 and 3. Plotting in these figures also is
the exact solution. As can be seen, there is good agreement between the numerical and the exact
solutions. The amplitude of the computed transmitted wave is slightly lower. This is due to the
artificial selective damping. The agreement between the numerical and the exact solution can be

improved by increasing the mesh Reynolds number or by reducing the mesh size.
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Figure 2. Comparison between numerical solution and exact solution,
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3. Category 2 Problems

It is easy to show, for the given rotor problem, the rotational frequency of the ducted rotor is below

the cut-on frequency. In other words, all the acoustic disturbances are cut-off or nonpropagating.

Thus, there is no sound radiation out of the open end of the duct. For this reason, only the open

rotor problem is computed.

The governing equations are,

The forcing functions are

NASA/CP—2000-209790

9v _ _9p
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F(z)=-exp |—(In2) (10:1;)2

To ensure that the computed solution is accurate, one must make provisions to take into account two
important characteristics of this problem. First is that the noise source is discontinuous at the blade
tip. This could be a source of short spurious waves. Second is that the blades are slender. That
is, the loading is concentrated over a narrow width. Computationally, this requires a finer spatial

resolution in the source region than in the acoustic radiation field.

3.1. Grid Design

The half-width of the forcing function (2.5) and (3.3) is 0.2. To resolve this width a minimum of 10
mesh points is necessary. In other words, the maximum mesh size in the source region is 0.02. This
high resolution is not needed as one moves away into the acoustic field. We will use the multiple-
size-mesh multiple-time-step DRP algorithm for computation. This allows us to use coarser and
coarser mesh starting from the source region. Figure 4 shows our computation domain. The domain
is divided into three regions. The mesh size as well as the time step double themselves each time
one crosses into an outer region. It is possible to use more regions with larger savings in computing

time. But this will require slightly more programming effort.
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Figure 4. The computation domain and mesh size distribution
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3.2. Numerical Boundary Conditions

Two types of numerical boundary conditions are needed. Along the outer boundary of the com-
putation domain, radiation boundary conditions are required. Along the axis of the cylindrical
coordinates; i.e., r = 0, a special set of axis boundary condition is needed. In this work, the following

radiation boundary conditions (see Ref. [1]) are used.

2,0 1
Jdt OR R

S8 R

where R = (r2 + :1;2)%.

As r — 0 (3.1) has a numerical singularity and cannot be used as it is. We note, however, that near
the axis, if we consider the Fourier-Laplace transform of (3.1) in « and ¢, the local solution has the

form

U~ Jp(Br)

- dJm(Br)

dr
(3.5)

p~ Jm(ﬁr)

where ( is a parameter involving the transformed variables and J,,( ) is the m™-order Bessel
function. It is well established (see Ref. [6]), that Bessel functions of integer order can be analytically

extended into the region of negative argument as,
Im(=pr) = (=1)" T (0r). (3.6)
By means of (3.6), the solution may be extended to the negative r part of the @ — r-plane as follows,
u(—r,x) = (=1)"u(r,x)
o(—r,x) = (=)™t o(r, )
w(—r,z) = (=)™ w(r, )

p(—r,x) = (=1)"p(r, x).
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Formula (3.7) allows us to extend the computed solution into the lower half of the & — r-plane as
indicated in figure 5. In this way, points near the axis, but not on the axis such as point A in figure
5, the 7-point stencil can be extended into the negative r half-plane as shown. For the points on
the axis, such as point B in figure 5, they will not be calculated by the time marching DRP scheme.
They are to be found, after the values at all the other points have been updated to a new time level,

by symmetric interpolation. Such a 7-point interpolation stencil for point B is shown in figure 5.

Fan
A\

Fan
A\

Fan
A\

Figure 5. Extension of the computational domain in the upper half

x — r plane to the nonphysical lower half plane

3.3. Artificial Selective Damping

Artificial selective damping is incorporated into the DRP computation algorithm for two purposes.
First, it is used to provide background damping to eliminate short spurious waves to prevent them
from propagating across the computation domain. Generally speaking, small amplitude short spu-
rious waves are just low level pollutants of the numerical solution. But if these waves are allowed
to impinge on an internal or external boundary of the computation domain, they could lead to the
reflection of large amplitude long waves. These spurious long waves are sometimes not distinguish-
able from the physical solution and is, therefore, extremely undesirable. The second reason to add
artificial selective damping is to stabilize the numerical solution at a discontinuity. The damping
prevents the build-up of spurious short waves, which are generated by the discontinuity, and this

promotes stability.
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In the present problem, the forcing functions are discontinuous at the blade tip. Thus, in addition
to the general background damping with an inverse mesh Reynolds number 0.05, extra damping is
added around the blade tip region. The mesh size change interface as well as the external boundary
of the computation domain are also a form of discontinuity. Extra damping is added around these
boundaries as well. For extra damping, a distribution of inverse mesh Reynolds number in the form
of a Gaussian function with a half-width of 4 mesh spacings normal to the boundary is used. The
maximum of the Gaussian is on the discontinuity with an assigned value of 0.05. At the tip of the
blade, where the forcing function is discontinuous, more damping is required. A maximum value of
0.75 is used instead.

3.4. Numerical Results

Equations (3.1) are discretized according to the multiple-size-mesh multiple-time-step DRP scheme
and marched in time to a time periodic state. To start the computation, the zero initial condition
is used. Figure 6 shows a comparison of the directivity at R = 50 obtained computationally and the
exact solution for {2 = 0.85, the subsonic tip speed case. As expected, most of the acoustic radiation
is concentrated in the plane of rotation. There is good agreement between the numerical results and
the exact solution. Figure 7 shows the directivity at supersonic tip speed with € = 1.15. There is
again good agreement. At the higher frequency, the acoustic wave length is shorter. Thus, figure 7

i1s a more stringent test of the accuracy of the entire computation algorithm.

©
O o
o~
*

6.0

5.0

3.0

2.0

1.0

0.0

o] 20 40 60 80 100 120 140 160 180

Figure 6. Directivity of sound radiation at R = 50, {2 = 0.85,

numerical, «« -« asymptotic
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Abstract

The high order Dispersion-Relation-Preserving (DRP) scheme is used to solve the first two category 1
problems of the third CAA Benchmark workshop. The perturbation equations about the mean flow are used
as governing equations in solving two problems. Special non-homogeneous inflow and outflow boundary
conditions are derived to generate incoming or outgoing disturbances. In order to create accurate results and
keep a minimum number of grid points, a non-uniform grid system in which neighboring mesh sizes differ by
afactor of 2 areused. Intheareaof grid interface, acombination of Tam & Webb DRP and Lele's cell-centered
high order differencing scheme are implemented, not requiring any interpolation. Large oscillations
typically produced by high order spatial schemes when the stencil extends across a discontinuity such as a
shock are avoided by introducing three methods, namely shock perturbation relation method (SPRM),
averaged mean flow discontinuity method (AMFDM) and limiter method (LM).The mean flow solutions are
obtained analytically by using one dimensional isentropic flow as well as the shock relations.

1. Introduction

The focus of computational aeroacoustics (CAA) is concentrated on obtaining long term time accurate
numerical solutions to unsteady flow and acoustic problems. There are several different concepts of how to
simulate acoustic problems numerically(refs.1). The main three of which are (1) employing an acoustic wave-
equation approach in combination with a predetermined dedi cated acoustic sourceterm, (2) the direct numerical
simulation (DNS) of all vortical scales, or the large eddy simulation (LES) of all essential scalesincluding the
sound generation, and (3) the perturbation approach, in which an averaged (quasi-) steady flow is pre-computed
and any perturbationsto it are ssmulated, using Euler's equations. In this paper, only method 3 isused to solve
the third benchmark problem.

The numerical study of aeroacoustic problems places stringent demands on the choice of a computational
algorithm. For long it has been recognized that numerical schemes with minimal dispersion and dissipation
error are needed, since the acoustic waves are non-dispersive and non-dissipative in their propagations.
Therefore, al the benchmark problems considered here are solved by using Tam & Webb's 7 points DRP
scheme (ref. 2) which is generally only used for uniform grids. In case of non-uniform grid systemsin which
the neighboring mesh sizes differ by afactor of 2, acombination of DRP scheme and Lele's cell-centered high
order scheme (ref. 3) are implemented to describe the derivative. The time advancing schemes used here are
classical 4 stage Runge-K utta schemes.

2. Category 1, Problem 1: Propagation of sound wave through a transonic nozzle

To reduce the complexity of the problem, but maintaining the basic physics, this problem has been modeled
by a one-dimensional acoustic wave transmission problem through a nearly choked nozzle.
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The governing equations, which are non-dimensionized with respect to the characteristic values in the uniform
region downstream of the throat, read as follows,

dp
3t +——(p A) =0 (1)

Ou Ou 10p _
3 +u&+ oox =0

— + ——(p A) + —p (uA) 0, (y= 1.4)

where A describes the cross section along the nozzle with following area distributions

2
E ~(In2) g
[0.536572 —0.198086¢ x>0
Alx) = ] ) 2
—(In2)52H
O 06
1.000000 — 0.661514e x<0

The computation domain extends from x=-10 to x=10 with the nozzle throat located at x=0, as shown in

Fig.(1) |

! |
| |
|
Radiation |——* \/ Outflow BD

‘\/\ =0 Z +Disturbance

C
Acoustic wave

I
! Moat |

Fig. 1  Schematic diagram of the computation domain for the propagation of sound
through a transonic throat of a subsonic nozzle

The perturbation formulation can be obtained by splitting the flow variables into the mean and perturbations,
the given mean flow field (P, 1, p), which is steady density, velocity and pressure, respectively. The
perturbation equations about the mean flow then have the following forms,
%p' + %:—X(ﬁu' +pu+pu)A =0 3)

p'u 00 _ 1 0,
P+ pDax F_) TpoxP T

%u' +(0+ u')aiu' + %1

9., 10 . 6

i+ p')%(u'A) -

Ay ¥l
puA)+ (puA)+ X pax(uA)+

In this problem, a single frequency (w = 0.6T1) sound wave with very small amplitude (€ = 10_5) is
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generated way downstream of the nozzle throat, and it propagates upstream through the nozzle, as shown in
Fig. (1). The upstream propagating wave far downstream of the nozzle throat is given as

F = E = €[] COS[QEI—LM-F%} 4)
P

Firstly, the steady solution is determined and secondly the perturbation solution is solved.
2.1 Steady flow solution
The physical quantities of the mean flow in the nozzle are connected by the isentropic flow relations as well

as the continuity equation. With area ratio A/A, and M, known, p is first found by solving the following non-
linear equation:

2 2
y-1 1 Mepa2 o M. 4 O
vy 3y B v )

where A, and M,, are area and Mach number at the uniform region downstream of the nozzle throat and A(x)
is the area at any given position x in the nozzle.

The other flow variable, pressure p, local sound speed a, Mach number M and velocity i can easily be found
by

M —1
_ [_y—1 A _
py, a= py M = (_)_;EA_E ,0 = Ma (6)

For M, = 0.4, the steady solutions are shown in Fig.(2). It can be seen that the local Mach number at the

nozzle throat is about 0.94 which is close to sonic. With the known mean solution, the perturbation equation
(3) can now be solved by using high order schemes.

2.2 Radiation and outflow boundary condition

From a physical point of view, the upstream propagating sound wave will partly be reflected from the area of
the transonic nozzle throat and partly transmitted to the upstream of the nozzle throat. In the nozzle throat, the
sound wave amplitude will be amplified. Therefore, to ensure that the computed solutions are of high quality
on the limited computation domain, the farfield boundary condition (BD) has to be imposed on both sides

of the computation domain as shown in Fig.(1).
At the left boundary of the computation domain, radiation boundary conditions which permit the transmitted

acoustic waves to leave the computation domain are to be imposed. These boundary conditions are developed
by using asymptotic solutions of the governing equations,
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Fig.2 Mean fiw (P, U, p, M{listribution along the nozzle for problem 1

At the right boundary of the computation domain, outflow boundary conditions are applied which allow
incoming sound waves to propagate upstream into computation domain and at the same time permit entropy
waves and reflected acoustic waves to leave the computation domain. Thus by means of the asymptotic
solution, in general the density, velocity, and pressure fluctuation can be written in the form of

p' 1 1 1

| = 0 X OX _ 0o x

u'l= 1FD1—_M+%+ OGEM IE+ 1HD1——+M % (8)
p 1 0 1

Where G and H are unknown entropy waves and unknown reflected acoustic waves, respectively, and F is given
as Eq.(4). By differentiating Eq.(8) with respect to t and x and eliminating H and G, the following non-
homogeneous outflow flow BD can be obtained,

Oy imlp s Oy o 20 o To0 X 0

P+ MP 4 = oy oin| o + G ®
d , 0 , 2we . 0 X 10

au +(1 +M)_6Xu = ——I—MSIH[Q)H/I-'_%}FED

0, 0 ., 2we .

o+ 1+ Mz = g ein o2y + ]
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t
where FEIEE =1-e" isa"turning-on" function which has been added to the right side of Eq (9) in order

to turn on the disturbance gradually. The larger T, the smaller isthe DC component in the time history of the

solution. Equations (7) and (9) of inflow and outflow BD are used to update the solution at the left and
right boundary points of the computation domain.

2.3 Grid systems

In order to keep adequate approximation to the partial derivative, aminimum of 6 to 8 mesh points per wave
length is required by the DRP scheme. The mean flow in the nozzle is so strongly non-uniform, especially
close to the nozzle throat, that the wavelength of the propagated acoustic waves are strongly varying too. In

general the non-dimensional wavelength can beestimated as A 021(1 - M)/ w. Sincethe maximum M inthe
nozzle throat is 0.94, the sound wave has a minimum wave length of A D)\O * 0.06 in that area, whereA 0

corresponds to non-dimensional wavelength under zero mean flow and Ay = 3.33 inthe present case. Due

to the problem description, it is required that no more that 400 mesh points be used. A uniformly spaced

grid mesh with 400 grid points in the computation domain could only render 4 mesh points per wave length,
which is much less than that required by the DRP scheme. Therefore, a non-uniform grid system in which the
neighboring mesh size differs by afactor of 2 isused, as shown in Fig.(3)

AX=AX max AX/[2 - — — AX/2"=DXmin AX
Region A i In;erfzace Region B
3a) &
I
AX | AX/2

3b) O—G #AJJ OG0

o
o

§

L

30) O ©

I

I
AJ

I

Fig. 3 A non-uniform grid system. The neighboring mesh size differs by a factor of 2.

Since the grid size in adjacent areas differs by afactor of 2 as shown in Fig.(3a), it isnot difficult to form a7
points DRP stencil at every pointin region A with amesh size of Ax and every point in region B using amesh size of
Ax/ 2 except for the first two points from the interface.

For the second point shown in Fig.(3c), aDRP stencil with agrid size of Ax can be implemented. For the first
point, a Lele cell-centered symmetric stencil (CC), as shown in Fig.( 3b), is used. A 6th-order explicit scheme
based on this stencil can be obtained from an approximation of the form
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where h = Ax and a = 1.171875, b = -0.1953125, ¢ = 0.0234375. It should be noted that this concept
can be directly transferred to 2D and 3D, by applying the mid-point differencing of Lele along the grid diago-
nalsin 2D and 3D.

NI o1
NI W
NIl =

The spectrum characteristics of Eq.(10) and its comparison with the DRP scheme as well as the exact solution are

givenin Fig.(4), where 0@ and a are the wave number representation of the finite difference scheme and of
the partial derivative respectively.

It can be seen that with aAx up to 1.2 the curve for the CC scheme is nearly the same as the DRP scheme.
After that, the CC scheme shows better resolution characteristics than that of the DRP scheme which drops down
very quickly for high wavenumbers.

3 -
- — — — — Lele-CC
—— Tam-DRP
- Exact
25 -
| ~ -
| -
| -
X 2 2 d
q B 7
IS - S
15| = .
B 7 N
- \
= \
1 N
- \
B \
| \‘
05 \
B .\,
\\
1 1 1
OO 1 2
aAX

Fig. 4 Plot of modified wavenumber vs. wavenumber for DRP and CC-schemes

To test the numerical dispersion and dissipation properties due to the non-uniform grid, a one dimension
nozzle with auniform areadistribution of A=1.0 and uniform mean flow a\/l =05p=1p= %is used and

a Gaussian distributed acoustic pressure pulse is seeded into the computation domain at x=0.0 at time t=0.0.
Thisinitial value problem is solved by the 7 points DRP scheme for the uniform grid and by the combination
of DRP and CC schemes for the non-uniform grid. The half width b of the pressure pulseis 3« 0.25, which
means that the half width of the pulse is resolved with more than 15 points for the uniform grid. In order to
eliminate the short wavelength spurious numerical waves generated due to the changing of the grid size and
different schemes used in the interface area, Tam’s artificial selective damping (ref. 4) is additionaly
introduced. A background damping coefficient of 2 is used in the numerical computation. In the calculations
of the propagation of sound wave through the transonic nozzle, extradamping coefficients are also added to
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the background damping in the area close to the nozzle throat where strong flow gradients occur. With
inclusion of the artificial selective damping terms, spurious waves are effectively eliminated in the numerical
solutions.

The governing equation has the form of Eq.(3). Computations are based on two different grids, one uniform
grid with 400 grid points and grid size Ax = 0.05 and one non-uniform grid with only 209 grid points and
the grid size decreasing from Ax,,., = 0.25 to Ax,,;, = 0.015625.

Initial value problem,t=0 o5
I t=2.0
Pp=p= 04
RNl oa
expD—(InZ)—Z] o |
0 (3 0.25)0 *2F
01|
M=0.5 .
0—10 -I5 >(I2 5 1‘0
uniform grid:
DRP scheme + 05
Atificia selective damping F 5100 : Uni-Grid 400
Non-uniform grid: R S A T Nonuni-Grid 209
DRP scheme + s b
CC scheme + N .
Atificial selective damping 02 |
o1}
o fg—— s “é““é““l‘o

Fig.5 Acoustic pressure distribution along nozzle axis (uniform cross section)

The calculated waveform at two different time instants t=2.0 and t=10.0 are shown in Fig.(5). When rel eased
at time t=0.0 an acoustic pressure pulse is generated and then split into two, the one propagating in the
upstream direction and the other in the downstream direction. At time t=10.0, the downstream propagated signal
has already left the computation domain. The resultsfor both grids show very small dispersion error. Both the
peak value and shape of the waveform on the two grid systems match very well except at t=10.0. At
t=10.0, the magnitude of the peak is almost identical. The difference on the shape of the waveform close to
the peak is purely due to the graphical representation on the large grid spacing used in the non-uniform grid
system.

2.4 Numerical solution for propagation of sound wave through a transonic nozzle

The computation is performed by solving Eq.(3) with the above mentioned hybrid high order schemesand farfield
boundary condition. Three different types of grid arrangements, one for uniform grids with 400 grid points
and the other two for the non-uniform grids with 209 and 321 grid points, are used. The grid point distribution
is so arranged for the non-uniform grid that the finest grid size is always located around the nozzle throat to
give the best wave resolution. The numerical computations continue for each grid until a time-periodic state is
achieved.
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The effects of the different T on the asymptotic DC component are studied. The non-uniform grid with 209
points is used to carry out a numerical simulation. Fig.(6) shows the time history of the pressure disturbance
at the nozzle throat at T = 30 and the effect of different T on the DC-component. With increasing 1, the
transient DC component drops very sharply from positive to one negative value and then gradually asymptotes
to the zero-axis. Although with large 1 the DC can be reduced, long running time is needed until the solution
attains an asymptotic periodic state. This zero-frequency component will remain in the solution since thereis
no natural decay of it in aone-dimensional problem. Finally Tt = 30 is selected in the following computations.
0.00015 =30
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P of
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Fig.6 Time history of pressure disturbance at x=0 and effect of different T on the DC-component

Turning back to the non-constant nozzle area case, the pressure distribution for the non-uniform grid with 321
grid points in which Ax .. and Ax are 0.125 and 0.0078125 respectively is given in Fig.(7) at time

ax min
t=320. It shows that the transmitted waves travel upstream from the nozzle throat and leave the domain
through the left BD smoothly. Moreover, sound wave interference between upstream propagated wave from
outflow BD and reflected waves from nozzle throat is very obvious. In the nozzle throat, the sound signal has
been accumulated and amplified.

Fig.(8) showsthe distribution of the maximum acoustic pressure over acycle and the strong gradients zoomed
close to the peak area. The comparisons between non-uniform and uniform grid display the effectiveness of
the grid refinements. Even with 209 points on the non-uniform grid, almost half of 400 uniform-grid, one can
still obtain much better results. The grid refinement is necessary close to the transonic nozzle to capture the
physical behavior and this has a pronounced effect on transmitted waves.

3. Category 1,Problem 2: Shock-sound interaction

In this problem, ashock occurs downstream of the nozzle throat in the mean flow solution. The same governing
equations as Eq.(1) are used, with which the problem is simplified as a sound wave passing through a shock
in a quasi-1D supersonic nozzle. All physical quantities used in the governing equations are non-
dimensionalized using the upstream value. The same geometry is used asin problem 1.

Due to the formation of a shock in the nozzle, the change of the perturbation signal is attributed to the induced
motion of the shock wave and its interaction with the disturbances in the flow. These disturbances may be
large so that the mean flow and shock position will change or they are small such as in the case of acoustic

wave or vorticity wave. Since the sound wave used in the present problem has the magnitude of 10, the
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problem is solved again by using perturbation formulation. In doing so, there is no feed-back loop between
the mean flow and the perturbation is assumed and the motion of shock is neglected, which isbelieved to be very
small due to the small disturbance.
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Fig. 7 Pressuredistribution for non-uniform grid with 321 grid points at t=320
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Fig. 8 Thedistribution of the maximum acoustic pressure over acycle

In order to propagate reliable information to the area downstream of the shock, the interaction between the
shock and the disturbance must be accurately predicted. Numerical difficulties in the form of large oscillations
occur using high order spatial schemes such as DRP or CC schemes when the stencil spans a discontinuity
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such as a shock. Three methods, which are named shock perturbation relation method (SPRM), averaging
mean flow discontinuity method (AMFDM) and limiter method (LM) are devel oped to avoid these problems.

The steady shock flow is solved by using isentropic flow and shock relations. The similar non-uniform grid
system as in problem 1 with the finest grid size in the area of the shock is used in the numerical simulation.

3.1 Steady shock flow solution

Two separated isentropic flow relations, one for the domain extending from inflow face to the pre-shock
position and the other for the flow behind the shock are used and are connected by shock relations. Using
isentropic flow relations and shock relations and assuming total temperature keeping constant across the
shock, one can figure out the equation for the pre-shock mach number M,

2 2 2 Y 2.Y
Euet A+ M- DR - DM +2) = ((y + M) = 0 (12)

Where p,; and p, aretota pressure of pre- and after shock respectively.

v ¥
1 y-1 B 1 -1
oo = Pt 2MZ+ 0 oy = pH M7 +B M= 10 (12)
20{(y - 1) _ EptD DAtD
M M+
oy Met 1= P A SRR Rt

The subscript t and e here represent taking the value at nozzle throat and uniform region downstream of the
shock. p, can be solved by replacing M and A with My and A; in the Eq.(5) and (6). p, is given as
0.6071752. Then the shock position x;can be found by solving the following equation,

1
Y-1)2, Oy-1),,2 7
Ax) 1 |02 Ml*h%—z—"\"ﬂ%" !
A My y-1n . y—10 = (13)
t 4+51 0 8+ o

The steady solutions are shown in Fig.(9). The shock position is around x;=0.4.

3.2 Inflow and outflow boundary condition

The same computation domain is chosen as for problem 1 except small sound waves are introduced at the
inflow BD. Therefore, the inflow BD of Eq.(7) hasto be modified to include this disturbance,

P’ 1
d ol .- || 2we 0
{ﬁ_(l_M)a_X} u. il COS[ E*1_ %}F (14)
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Where w and ¢ arethe same as problem 1. The outflow BD can be obtained by setting F=0 in Eq.(9).
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Fig.9 Meanflow (p, U, p, M) distribution along the nozzle

3.3 Numerical solution on sound-shock interaction
In order to reduce or avoid large oscillation when using high order schemes, three methods are introduced.
(1). Averaging mean flow discontinuity method (AMFDM)

In this method whenever DRP (or other high-order scheme) stencils come across the shock located between
X=s; and s, asshown in Fig.(10), the function values at s; and s, are averaged. As an example of a DRP-stencil

centered at a pre-shock position, the following approximation for the finite difference scheme at x will be used,

if(x)DiE ; af(x+jAx) +a,f(x )+a—2(f(x ) +f(x ))+a—3(f(x ) +f(x )E (15)
ox B :2_3 j X TIAX) T8 X)) T 5 T G) H X)) T 5 TR+ 1) g
! S1 S2 ;
: Lo .
o o @ @ @ @ @ @ @
l)( X1 X2 X3 :

Fig. 10 Stencil used for AMFDM method

(2). Limiter method (LM) - set alimiter on finite diff erence of mean flow
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Two procedures have to be executed for this method. DRP differentiation at x is considered. Firstly, for

domain bounded by the vertica dashed line, see Fig.(11), two extra-points are linearly inter-

polated between two adjacent grid points using the function value on these two grid points. Secondly,
the generated extra-points are used in the DRP stencil and a limiter is set on it as given in Eq.(16)

. s
Extra-points | il 2
@ @ @ @ oo (O o o9 @ @ @
I X X1 X2 )43
1

Fig. 11 Stencil used for LM method

f(x) [ —

09 A ) g
(Bx )/3 5:2 ch % 3)%+a1f(xl)+a2f(x2)+a3f(x3)§,K - 06 (16)

(3). Shock perturbation relation method (SPRM)

By perturbing the shock relation about the mean flow, an explicit linearized rel ation between the pre-and post-
shock perturbations may be obtained:

_ 1-1r 5

P2 2 _ 2 _ P
U 20 1 U 20 1
U, = 2 2P2 L 1P1 U, (17)
. -y P2 _ y 1 -y P1_ v 1|~
Pg 15712 Y Tip) |voiz UM oyoap Pt
_Y 152 Y 192_ _V 151 Y 191_

Where indices 1, 2 denote pre- and post-shock state respectively. To implement this method, following
scheme arrangements are used. For the three pre-shock grid points the DRP-backward stencils are used as
shown in Fig.(12). For the two post-shock points downstream of s, the DRP forward stencils including point

S, are used. To update the value at s,, EQ.(17) is used. This method avoids the DRP stencils across the shock.

: Point using linearized shock perturbation
Fig. 12 Stencilsused for SPRM method
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In order to implement AMFDM and LM methods, Eq.(3) has been modified, in that the differentials for the mean
flow variables and the perturbation variables are separated, as given in EQ.(18). EQ.(3) is used for the
implementation of the SPRM method. A non-uniform grid with 393 grid pointsis used. Fig.(13) shows the time-
asymptotic distribution of the pressure perturbation at start of a period for above three methods in
comparison with the exact solution. Comparisons show that the effects of different shock treatments on the
results upstream of the nozzle throat are very small since no information will be fed back upstream due to the
supersonic flow.

0 ua_ p'a _ ~0 ,, 0 , 10 , .\ _

at F AP T Ao T PaxY T UgxP T AaxP YA = (8
0 puo0 1 0 ,_
atU+(U+u)_U+EJ+ETEDWU+ﬁ+p'Wp_O

0 Lt ,y-19.0 au,+Ui

F T Aa S (PA) T+ A TP ax(0A) * Py + g+
K&(p'U'A) + T(D + p')W(U'A) =0

The pressure distributions, shown as well in zoom scale near shock show the SPRM method gives the best
representation of the sound wave in general, while LM and AMFDM have some dispersion error. The sound
waves downstream of the shock and in the shock area are very much dependent on the different shock
treatments. The LM method renders a fairly good representation of the amplitude downstream of the shock,
but there is a small phase difference to exact solution. AMFDM method in general underestimates the signal
downstream of the shock.
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Fig. 13 Distribution of the pressure perturbation at the start of a period

Theinstantaneous pressurefield at the exit plane through one period as given in Fig.(14) again showsthe same
tendency.
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Fig. 14 Instantaneous pressure field at the exit plane through one period.

Conclusions

() In order to produce accurate results and keep a limited number of grid points, a non-uniform grid system
is used to solve problems 1 and 2. The results show the grid refinements to be effective when a combination
of the DRP and cell-centered high order schemes as well as artificial selective damping are used at the grid
interface.

(2) The DRP scheme and proper treatments in the area close to the shock can generate convergent results.

(3) The effects of different treatments on the results are seen in the area downstream of the shock; but little
effects on the results are observed in the area upstream of the shock.

(4) The SPRM method gives the best representation of the sound wave in general.
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SOLUTION OF THIRD COMPUTATIONAL WORKSHOP INTERNAL PROPAGATION
PROBLEMSUSING LOW ORDER SCHEMES

JEFFREY HILTON MILES
National Aeronautics and Space Administration
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Abstract

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack
scheme. Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state.
The problems are solved on evenly spaced grids. While solutions were found, the methods selected and not
using stretched grids lead to solutions which do not compare well with those found using more accurate
schemes. However, the perturbation of the mean flow scheme used to solve problem 2 shows promise.

1 Introduction

The claim is often made that the computation of aeroacoustic problems requires numerical schemes of high
accuracy, low dispersion, and almost non-dissipation [1, 2]. This paper shows some of the complications that
arise in obtaining a solution for the propagation of sound waves through a transonic nozzle for cases where
the flow is nearly sonic and for cases where the flow has shocks if one ignores these requirements and uses
lower order schemes.

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack scheme.
Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems
are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched
grids lead to solutions which do not compare well with those found using more accurate schemes.

2 Governing Equations and Numerical Formulation

21 Problem1

The solution scheme used to solve the propagation of sound waves through a transonic nozzle problem uses
the conservative nonlinear acoustic formulation Hariharan and Lester [3, 4] and a low order MacCormack
computation scheme. The mean flow was found using analytical gas dynamic equations.

The MacCormack differencing scheme used to generate numerical solutions has two steps applied at At /2
intervals. The first step involves a backward predictor, LT = % = (fi — fi—1)/h and a forward corrector,

L™ = g—; = (fi+1 — fi)/h. The second step uses a forward predictor with a backward corrector.
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In addition, no grid stretching was used since use of constant spacing maximized the time step size. A
total of 381 grid points are used. The largest CFL number that could be used for a convergent solution was
CFL = 4.103. Consequently, for each cycle about 9925 steps were used.

2.2 Problem 2

The solution scheme presented for the Shock-Sound Interaction Problem is based on perturbation of a conser-
vative Euler equation solution. The Euler equation solution is solved using the Steger and Warming (1981) [5]
flux vector wave speed splitting technique. Note that while the Steger and Warming (1981) [5] paper discusses
using MacCormack schemes to obtain solutions for the flow field, the steady state flow field discussed herein
was obtained using procedures described in Chapter 10 Section 3 of Ref. [6] which require a block-tridiagonal
solver. The block-tridiagonal solver used is described in Ref. [7].

In addition, again no grid stretching was used since use of constant spacing maximized the time step size.
A total of 701 grid points are used. The CFL number used in these cal cul ations was unity.

2.3 Shocks

Due to the limited number of points in the nozzle region the steady state solution did not work well with
supersonic flow. To make the code more robust in the nozzle region the following scheme was used when the
code has a problem obtaining a solution due to a shock. The code was prompted to use analytical solutions as
follows:

Cir = \/YPj-1Ch/Pi-1

Mj_1 = Uj_1Cref/Cj—1
2 2
M2~ Mty
) Y\ 2
When M# > 0 then
L = MWD 1Cre
- Pj-1Rgas
1+ 5iM2
T = T 1 31|\;|21
+ M
1+ymM2
p] - pjfl 1—|—VM]2
o = p (Y+1)MF_,
YPj Cret
Ci =
Pj
Uj = CjMj/Cref
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When Mj2§0use

uj = uj1ifj=2

uj = 0.5(uj_1+uj_p)if j>2
Pj = 0.2P:C% / Pref Cret

pj = YPj_1/uf

2.4 Formulation of Perturbation Scheme

After making sure one can use the mean flow program and obtain a mean flow solution for p, 0, and p, one
must modify the steady state program to solve the perturbation problem.

The first step in creating the perturbation scheme is to note that one can create the average of density, velocity
and pressure using arecursive method. Y (n) the average of x(n) over n time steps can be calculated from

(n+1)y(n) = r‘fx(k) +x(n) =ny(n— 1) +x(n)

k=0
v = My X

The second step is to define the start of a period of awave with frequency fo which is advanced in atime step
At fromt tot 4 At.
Let

8o = 2mfo(At—1.107°)
6 = 2mt

Then the start of acycleis defined as the time at which cos(8) > cos(8p), sin(8) > 0, and sin(6) < sin(Bp).
Using this scheme the average over a period for the Nth period of the density, < p >, velocity,< u >, and
pressure,< p > can be calculated. Then the acoustic perturbation quantities are defined as follows

)" = p"—<p>(N)
)" = u"-<u>(N)
(P)" = p'—<p>(N)

For the first period one can use the mean flow values
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<p>(1) p

<u>(1) = a

<p>(1) =p
)" = p"-p
" = u"-u
()" = p"—p

3 Boundary Conditions

For Problem 2 the boundary conditions for the case studied have two parts. One part is for the steady flow
and the second isfor the unsteady flow. The boundary conditions used for both parts are based on the acoustic
characteristic equations for flow in a constant area tube. The governing isentropic differential equations are

0 Jdpu
at T ax = 0
ap Ju op B
p(ﬁ*”ﬁ)*ﬁ = 0
@ M _ ou _
0t+ . +(y-pgy= 0

The acoustic system equations are derived by decomposing the fluid variables into a steady flow component

and an acoustic perturbation component.

{0} = {@}o+{¥}

{o} =

Using this assumption Eq. 1 can be written as

o{¢} o{¢}
ot +M] d X =0

where

[M] =

U po O
0 ug p_lo
0 ypo Uo
Note that y po = Po C3.
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The matrix differential equation is diagonalized by a similarity transformation using the matrix [T] such that
] = [T] HM][T]
where

Uo 0 0
Ar]=] 0 up—co O
0 0 Uo + Co

[1 1/c3 1/c3 1
[T]1=]0 —1/poco 1/poco
[o 1 1 J

1 0 ~1/c3
T = {0 —PoCo/2  1/2 ]
0 poco/2 1/2

Then

oW}, 0wy

ot [AT] 0Xx 0

where

(W} = {wi,wo,w3}T = [T]7H¢}
p—p/c}
(P —pocou)/2
(p'+pocou’)/2

For subsonic flow the entropy wave associated with w; moves with the flow at velocity ug, an acoustic wave
associated with w3 movewith the flow at vel ocity ug+ co, and another acoustic wave associated with wo moves
against the flow with velocity ug — cg. Consequently, at the inlet where two characteristics enter the duct for
the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.

3.1 Problem1

Theinlet is assumed not to produce reflections. Consequently, the gradients of the upstream moving charac-
teristic waves are zero. The downstream moving characteristic wave is assumed to be the same at points 1 and
2. Theinlet boundary condition for the steady state and perturbed flow is then derived from

(p3—P2) —P2C2(Uz—p) = T,
(p2—p1) — (P2 — P1)/CE 0
(p2—p1) +Pp1Ci(le—u) = O
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The solution for py,u; and py is

p1 = pP2—Ta/ ZC%
Ui = Ux+Ta/2p1C1
pr = p2—Ta/2

At the exit

0 = wW(Xeit/(1—Meit)+t)

Pexit = € €0S(0)

Usit = —€ Ccos(B)

Peit = € COS(0)
3.2 Problem 2

For subsonic flow the entropy wave associated with wi; moves with the flow at velocity up, an acoustic wave
associated with ws movewith the flow at velocity ug+ co, and another acoustic wave associated with w, moves
against the flow with velocity ug — cg. Consequently, at the inlet where two characteristics enter the duct for
the steady state case two boundary conditions can be set and the third can be extrapolated from interior values.
Theinlet boundary condition for the steady state and perturbed flow is then

pi™t = 1+esind
ultt = 2u)-uj+esind
pitt = 1/y+esind

X1
= —t
0 CO(1+M1 )

At the exit since two characteristics leave the duct and one enters, one can specify only one boundary condi-
tion. The other two boundary conditions are found by extrapolation from the interior.
Thus for this case where the exit pressure , pesit, IS constant we have

n+1 n n \n+1
Pibc 2pjmax_pjmax—1+(p)jbc
n+1 __ n n N\N+1
ujbc - 2ujmax_ujmax—1+(u)jbc
n+1 . /\n+1
Pibe = pe><|t+(p)jbc

Additional comments on boundary conditions for one dimensional flow are presented in section 10.4 of Ref.
[6] and in section 16.4.2 thru 16.4.4 in Ref. [§].

The unsteady part is also based on acoustic characteristic equations.

For density and velocity perturbations we use
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)i = 2(0)jmex — (P)mex1
(W = 2(U) max— (W) et

At the exit a non-reflecting boundary condition is used. Consequently, the wave components propagating in
the negative x direction are zero and we have 2%2 = 0.

0 X
Consequently,
op ou’
% PGy = O

(M) = (P ax+PoCo | (U)o — (U) e

Note that these boundary conditions are used in the solution in flux vector form

Qi = p
Q2 = pu
Qs = pa=p(e+u?/2)=p/(y—1)+pu’/2
In addition, the quantity solved for in the tridiagonal matrix equation isAQ = Q"1 — QM.

4 Results

41 Problem1

The steady mean normalized density, p/peyit, VElOCity, 0/Cqyit, @and pressure, P/ peyit are shownin Figs. 1-3
for Category 1 Problem 1. The distribution of maximum acoustic pressure during cycle 2 isshown in Figs. 4
and 5. The ripple found between the nozzle throat and the nozzle exit in solutions by other participants did
not appear.

4.2 Problem 2

The steady mean pressure distribution is shown in Fig. 6 and a close up view of the nozzle region is shown in
Fig. 7. The steady mean Mach number distribution is shown in Fig. 8 and aclose up view of the nozzleregion
isshown in Fig. 9. While the overall plots of pressure and Mach number shown in Figs. 6 and 8 appear fine,
the plots in the nozzle region (Figs 7 and 9) only roughly resembles a good steady state solution.
Calculations were done using a CFL number of 1. For the shock sound interaction problem the pressure
perturbation distribution at the start of cycle 500 is shown in Fig. 5. Comparison with solutions using other
methods show that the solution after the shock is much better than the solution before the shock.

The pressure perturbation at the exit over one cycle starting at the start of cycle 500 is shown in Fig. 6. The
solution for the pressure time history at the exit shows a phase lag of about 320 degrees.

The error at the end of aperiod for the pressure perturbation distribution at the start of each cycleis shownin
Fig. 7. A stable solution is obtained after cycle 400.
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5 Conclusions

The problems solved are Category 1 Problems 1 and 2. Problem 1 is solved using a MacCormack scheme.
Problem 2 is solved by perturbation of a conservative Euler equation solution to the steady state. The problems
are solved on evenly spaced grids. While solutions were found, the methods selected and not using stretched
gridslead to solutionswhich do not compare well with those found using more accurate schemes and stretched
grids. The perturbation of the mean flow scheme used to solve problem 2 shows promise. Investigations should
be undertaken on how to improve accuracy by use of grid stretching and use of more sophisticated methods
of solving the mean flow.
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OPTIMIZED WEIGHTED ESSENTIALLY NON-OSCILLATORY FINITE DIFFERENCE
SCHEMES FOR COMPUTATIONAL AEROACOUSTICS

R. F. Chen and ZHI JIAN WANG
CFD Research Corp., 215 Wynn Drive, Huntsville, AL 35805

Abstract

Optimized weighted essentially non-oscillatory (WENO) finite difference schemes have been developed to
take advantage of the optimized schemes of resolving broadband noise with less grid points per wavenumber
(PPW) and the WENO scheme of highly accurate resolution for discontinuities. Optimized schemes for all
stencils used in essentially non-oscillatory (ENO) are constructed based on a given order of accuracy and by
minimizing truncation error for a given range of wavenumbers. Then these optimized schemes are combined
following the idea of the WENO scheme through weights. The weights, however, are not constructed purely
to achieve higher order of accuracy in smooth regions as in the WENO scheme. They are constructed also to
minimize the truncation error in the wavenumber space. The smoothness indicators are built in the weights as
in the WENO scheme so that the weights of the stencil containing a discontinuity can be essentially 0 to
emulate the ENO idea. A seven point stencil, third order accurate optimized weighted essentially non-
oscillatory finite difference scheme is constructed. The scheme has been tested for the scalar model wave
equation and compared to the seventh order accurate WENO scheme using the same stencils. The test shows
the developed scheme gives much better results in resolving a wave with 6 ppw than the WENO scheme, and
it performs as well as the WENO scheme near discontinuities. The scheme together with a third order TVD
Runge-Kutta method is then applied to the linearized Euler equations to solve the two benchmark problems in
Category 1. Analytical mean flow solutions are used in the linearized Euler equations for both problems. For
the first problem, the weights without smoothness indicators are used because the mean flow is smooth. For
the second problem, the smoothness indicators are built in the weights to damp the spurious oscillations near
the shock wave.

Introduction

The recent past has seen impressive progresses made in Computational Aeroacoustics (CAA). As pointed out

by Tam!, aeroacoustic problems differ significantly from the aerodynamic problems in the nature,
characteristics, and objectives. They are intrinsically unsteady, and the dominating frequencies are usually
high. Therefore the development of CAA algorithms needs independent thinking. As a result of this
independent thinking, many powerful numerical algorithms have been developed to address the particular
problems in CAA. One landmark development in CAA algorithms is the Dispersion-Relation-Preserving

(DRP) finite difference schemes developed by Tam and Webb?. Many other CAA researchers have applied

high order schemes to CAA3*. In the DRP schemes, central differences are employed to approximate the first
derivative. They are, therefore, non-dissipative in nature. Although non-dissipative schemes are ideal for
aeroacoustic problems, numerical dissipations are required to damp any non-physical waves generated by
boundary and/or initial conditions. In practice, high-order dissipation terms are added to the DRP schemes to
damp spurious oscillations. The amount of artificial dissipations required is, however, problem dependent.
One may need to fine tune the artificial damping to obtain the best results for a particular problem at hand. To
remedy this problem, optimized upwind DRP schemes have been developed more recently by Zhuang and

Chen!?. Instead of using the central difference stencil, an upwind-biased stencil was selected based on the
local wave propagating direction. Then the upwind schemes are optimized in the wave-number space
following the same idea of DRP schemes. The upwind DRP schemes are by design dissipative. Therefore
they are capable of damping spurious waves without any extra artificial damping, relieving the user from fine
tuning the amount of numerical dissipations. Another advantage of the upwind DRP schemes is that
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acceptable results can be obtained even if the mean flow contains discontinuities. With both the DRP and
upwind DRP schemes, it is nearly impossible to obtain oscillation-free numerical solutions if the mean flow
is discontinuous. For non-linear shock-acoustic wave interaction problems, numerical oscillations may
contaminate the resultant solutions.

The pursuit of non-oscillatory numerical schemes for hyperbolic conservation laws has resulted in many
significant developments in CFD during the last two decades. Notable examples include the MUSCL scheme
by van Leer, TVD schemes by Harten, and other high-resolution schemes. The MUSCL and TVD schemes
are designed for shock-capturing, and is usually first-order near smooth extrema. In order to achieve
uniformly high-order accuracy throughout the computational domain, the Essentially Non-Oscillatory (ENO)

schemes were developedlz. More recently, weighted ENO (WENO) schemes were developed to further

increase the order of accuracy, while resolving discontinuities with essentially no numerical oscillations!>.
Both ENO and WENO were designed to achieve high-order accuracy in smooth flow region while
minimizing oscillations near discontinuities by avoiding the discontinuity-containing stencils. Like the ENO
scheme, the WENO scheme is designed for problems with piecewise smooth solutions containing
discontinuities often encountered in aerodynamic flows. Their high accuracy is referred to the truncation error
for smooth solutions and can be achieved for relatively long waves. For short waves, the scheme quickly

becomes less accurate!*. Unfortunately, acoustic problems always contain sound waves with broadband
wavenumbers. Therefore, the direct application of ENO or WENO schemes to CAA would not be optimum.

In this study, we attempt to unite the advantages of both the DRP schemes and WENO schemes in the
development of Optimized WENO (OWENO) schemes. The idea is to optimize the WENO schemes in the
wave number space following the practice of the DRP schemes to achieve high-resolution for high-frequency
waves, i.e., to resolve a wave with about 6 points-per-wavelength (PPW). At the same time, OWENO scheme
will retain the advantages of WENO schemes in that discontinuities are capturing with essentially no
oscillations, and without any extra numerical damping. Therefore, the OWENO scheme will perform as well
as the WENO scheme near discontinuities while having the advantage of the optimized schemes of resolving
broadband noise with minimum PPW.

Optimized WENO (OWENO) Schemes

Optimized schemes preserve the wave propagation characteristics for a relatively large range of
wavenumbers and require less PPW. They are usually constructed by optimizing the finite difference
approximations of the spatial and temporal derivatives in the wave and frequency domains'-?. We start with a
one-dimensional model wave equation on a uniform grid and use conservative approximation to the spatial
derivative following common approaches for finite difference method in CFD!. The constructed scheme for
the model equation can then be easily extended to the Euler equation in conservative form in multi-
dimensions. Consider the scalar wave equation with constant wave speed a:

%‘ + ag—l; =0 1)
Given the point values of the solution u(x): u; = u(x;, f), and a stencil {x;,, ..., x;;,} with r+s+1 =k, kisa
predefined stencil size, one can construct polynomials of degree at most 4-1 to approximate u(x) in the
interval [x; 1,5, X;+1/2]. The polynomial approximations on the two boundary points of the interval can be
written as the linear combination of the values of u(x) at the given stencil points as

~F, - _ k-1 ~r9+ — k-1~
Uiv1/2 = zj=()crjui—r+j Ui12 = 2j=0crjui—r+j (2)

The superscript » means that there are » points to the left of grid point x;. We note that the difference between
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the values with superscripts at the same location x;4 ;, is due to the one stencil point shift. Therefore it is clear
Nrj =C,_y,; Without loss of generality we consider the case of a > 0 only and drop the superscript * for

c
convenience. Consider the finite difference approximation to the spatial derivative in equation (1) to the p;-th
order of accuracy:

ou
Ax(uz+1/2 _1/2) = (a )+0(A ) 3)
where Ax = x;,,,,—X;_1,, and p; <k. Assuming a solution in the form u(x, ) = U(¢)exp(iox) and
substituting it into equation (3) we have:

g “/_ S, ¢, ;+rexp(J-1j0Ax)[1-exp(—/~TaAX)] = o+ O(aAx)” 4)
j=-r

The left hand side of the above equation is known as the numerical wavenumber. From Taylor expansions, it
is seen that equation (4) gives p; equations for £ unknown coefficients, j=-...., s. If p; <k, this leaves k-p;
coefficients as free parameters. These parameters can then be determined by minimizing the following L,
norm of the approximation error of the numerical wavenumber to the actual wave number for a range of
waves. To be more specific, we seek C,; SO that they satisfy equation (4) and minimize the following integral

E= aj;{k[Re(&rAx) —aAx])? + (1 =) [Im(& Ax)]* YdoAx (5)

%o
where o, is a predetermined wave number which gives the optimized range of wavenumbers. Parameter A is

chosen to be between 0 and 1 balancing the error in real part and in imaginary part. The imaginary part of
error affects the magnitude of computed wave, while the real part contributes to the phase error.

It is seen that there are k candidate stencils {x;,...., x;4} for r = 0, 1,..., k-1. In both ENO and WENO
approaches, c,; are solely determined by equation (3) with p; =k, i.e. no optimized procedure is used. ENO
picks a preferred stencil by comparing divided differences of the solution u(x) to achieve the idea of “adaptive

stencil”, while WENO convexly combines all of them through weights!>. In the OWENO approach,
optimized procedure is used for all the candidate stencils which are then combined through weights following
the idea of the WENO. The weights, however, are not constructed purely to achieve higher order of accuracy
in smooth regions as in the WENO scheme. They are constructed also to minimize the truncation error in the
wavenumber space. Smoothness indicators are built in the weights as in the WENO scheme so that the
weights of the stencil containing a discontinuity can be essentially 0 to emulate the ENO idea. More

specifically, we first seek constants d, in the combination u; | ,, = ZI: _ lod U4 .1, so thatif the solutions
is smooth over all the candidate stencil, we have
1~ ~ ou +p
Al o=t = (3] +0as” P ©

with 2’;; lodr = 1 and p, <k-1. This can be done by Taylor expansions which leaves k-1-p, weights as

free parameters. These parameters can then be determined by minimizing integral in equation (5) with &

replaced by 0 = 2’:; lod 0 . Since d, is determined based on the assumption of smooth solution, it is not

suitable when solution has a discontinuity in one or more of the candidate stencils. In this case we expect
weights to be essentially 0 in the stencils containing discontinuities to emulate the ENO idea. We would use
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. . . s o -1
nonlinear weights w, to replace d, with a built in smoothness indicator so that w, = d_+ O(Axp2 ) for smooth -

solution, and it is automatically set to a small value close to 0 for the stencils containing a discontinuity.
Following the approach in [15], we choose the following weights

k— !
o, dr _ 1J~xi+1/2 Ale— l[a p;(x)
ox

Wi T T T .
Yo% (e+B,) [=0 i1
where p,(x) is the polynomial of (k-1)th order over the interval [x;_;», x; ;/,] determined by the given values
on stencil {x; ..., X;4}.

2
]dx,r= 0,....k—1 )

In this paper we constructed a third order accurate OWENO scheme withk=4,p; =2,p, =1, A = 0.5 and
o,Ax = 0.35m. Figure 1 shows numerical wavenumber comparison between the third order accurate

OWENO scheme and the 7th (24-1) order accurate WENO scheme with same stencils. It is seen for the same

accuracy the OWENO can resolve wave with alAx up to 1.05 while WENO with otAx up to 0.7. In another
word the OWENO requires only 6 ppw while WENO requires 9 ppw.
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Figure 1. Comparison of numerical wavenumbers of the OWENO and the WENO schemes

Validation

To validate the designed advantages of OWENO over WENO, two cases for the model wave equation (1)
with a=1 are chosen for the comparison of OWENO and WENO schemes. A third order accurate TVD
Runge-Kutta method is used for time integration for both schemes!®. In the first case a sinuousoidal wave
uy(x) = sin(n/3x) is released initially. Weights without smoothness indicators are used, i.e. w, = d,.
Figure 2a shows the comparison of computational errors for the two schemes at =60, with spatial size
Ax = 1 or ppw=6. It is seen the numerical error by OWENO is significantly less than that by WENO. In the
second case a periodic step wave is released initially. Figure 2b shows the numerical results compared with
exact solution at ¢+ = 100 with Ax = 0.5. It indicates that the OWENO behaves as well as the WENO near
discontinuities. In both cases time step A¢ is set to 0.1 which is small enough so that the error due to time
integration is negligible.
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Figure 2. (a) Computational errors for sinuousoidal wave; (b) Comparison of numerical results with the exact
solution for the step wave

Application to Benchmark Problems

In this section we extend the OWENO scheme to the linearized Euler equations and apply the scheme to the
two benchmark problems in Category 1. For both problems the third order accurate TVD Runge-Kutta
method used in the validation cases is applied for time integration. Near boundary, waves are decomposed
into incoming and outgoing components. One-side biased 3rd order optimized schemes are constructed and
applied to the decomposed wave components.

Propagation of sound waves through a transonic nozzle

In this problem, non-conservative linearized Euler equations in curvilinear coordinate x = x(&) are used.

The equations can be written as:
93 331)01& 3
— + —_— 2 =

ot (AOag &0 (8)

. . . . 2, . .
where A4, is the Jacobian matrix with respect to the mean flow. S contains mean flow variables, and mean

flow variable derivatives and nozzle area derivatives. Mean flow and mean flow derivatives are obtained
analytically. We extend the OWENO scheme to equation (8) as the following:

83,~ 1 + - ~- R 4 dEY 3
> + E[M(QH 12= 9212 T 40(4+ 12— 9 -1,2)] T) Si )
with ¢;,,, and 5; 1,2 obtained by the procedure described in above section. The Jacobian matrix is

decomposed into two parts, 4,= 4, + Ay, with 4, containing only non-negative eigenvalues and Ay only

non-positive eigenvalues. A non-uniform grid with 301 points on domain [-10, 10] is used with hyperbolic
sine transformation. No smoothness indicators are used in the weights because of smoothness of the mean
flow. Figure 3 displays the maximum pressure envelope on three intervals for better comparison with the
exact solution. It is seen that about 6 ppw is used for the wave near the outlet. Excellent agreement between
the numerical result and the exact solution is shown.
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Figure 3 Comparison of numerical maximum pressure distributions with the exact solution

Shock-Sound Interaction

Since there is a shock wave in the mean ﬂow we use conservative linearized equations written as
)
Q 2+2.(8,0) - (10)

where Q is conserved perturbation variables, B, is the Jacobian matrix of conserved fluxes with respective

to the mean flow conserved variable. Now source term does not contain the derivatives of mean flow
variables. The mean flow is obtained analytically. Define left and right propagating flux vectors as

F = O.S[Bo—maxlkl(éo)l]é F' = 0.5[Bo+maX,7»l(§0)|]é (11)

where A’ , I=1,2,3 are three eigenvalues of matrix B). We then extend the OWENO to equation (10) as the
following:

5 - .. ~t
8Qtl+_(F+1/2 Fiov) = Hi Fivi2 = Fiv12% Fiv12 (12)

A uniform grid with 201 points on domain [-10, 10] is used. Figure 4 shows the comparison of numerical
results with the exact solutions. Results obtained with OWENO using conservative linearized equations agree
very well with the exact solutions except for a little overshooting near the shock wave. This may be caused by
the extension of scalar scheme to the split flux vectors of equation (11). Characteristics based extension may
give better prediction near the shock wave. Furthermore the smoothness indicator given in equation (7) may
not be most suitable for the optimized schemes. Future work will investigate effects of different extension and
smoothness indicators. We note that non-conservative equation under predicts the pressure in the exit plane,
because the solution is not continuous.

Conclusions

OWENO schemes have been developed to combine the advantages of both the DRP and WENO schemes. By
design, OWENO schemes have high-resolutions for broadband waves with wave-lengths longer than 5-6 grid
points per wave. Meanwhile, the OWENO schemes retain the essentially non-oscillatory nature of WENO
schemes in the presence of discontinuities, such as shocks and contact discontinuities. Numerical tests with
model wave equations confirm the expected advantages of OWENO schemes. The OWENO schemes have
been applied to solve the first two problems in the Third Computational Aeroacoustics (CAA) Workshop on
Benchmark Problems. Numerical results for both smooth and shocked mean flows agree well with analytical
results. The OWENO schemes are ideally suited to solve the non-linear Euler equations for shock-acoustic
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wave, and shock-vortex interaction problems. The implementation of the OWENO schemes for the Euler
equations is now under way.
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Figure 4. Left: Comparison of computed pressure with the exact solution; Right: Comparison of pressure at
exit plane computed with conservative and non-conservative linearized equations with the exit solution
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ADAPTIVE NONLINEAR ARTIFICIAL DISSIPATION MODEL FOR CAA

JAE WOOK KIM and Duck Joo Lee
Korea Advanced Institute of Science and Technology
Taejon, Korea

1. Introduction

Several kinds of artificial dissipation models were developed so far for the purpose of obtaining
numerical stability and efficient convergence features of numerical schemes based on the central
differences [1-7]. These present good resolution characteristics near discontinuity of nonlinear waves but
have a tendency to damp out the amplitude of linear waves seriously, because these were originally
designed to suppress the low wavenumber components of a wave profile. Therefore these are not suited
for the time-accurate numerical solutions of aeroacoustic problems that contain linear waves of very small
amplitudes in the far field. Jameson [1], Pulliam [2] and others [3-5] applied the nonlinear artificial
dissipation model to the steady Euler computations, which was a blend of the second-order and fourth-
order derivative term with the nonlinear switching coefficients. It has excellent shock-capturing properties
and helps fast convergence to the steady state, but it leads to the unnecessary damping of the linear waves
because it cannot distinguish the small-amplitude linear waves from the spurious numerical oscillations.
The artificial selective damping model was introduced by Tam et al. [6, 7] to solve the nonlinear acoustic
problems using the dispersion-relation-preserving scheme [8] which is a high-order and high-resolution
solver based on the central differences. The artificial selective damping model has been used for time-
dependent CAA solutions and not for the convergence to a steady-state solution. It was designed to damp
out the spurious wave components effectively in the high wavenumber range unresolved by the finite
difference scheme, while at the same time keeping the wave components in a wide band of the low
wavenumber range unaffected. It is good for linear waves without unnecessary damping, however it lacks
the shock-capturing properties to resolve the nonlinear discontinuity and is not able to remove the
spurious oscillations completely around the nonlinear waves.

In this paper, an improved formulation of artificial dissipation model is derived for CAA, which
removes the spurious numerical oscillations produced by the nonlinear waves sufficiently but does not
have an effect on the linear waves. The artificial selective damping model and the nonlinear artificial
dissipation model are combined for the numerical stability and temporal accuracy of CAA performed by
the high-order and high-resolution central difference schemes. The artificial selective damping model is
reformulated into a conservative form to maintain the correct phase speeds of nonlinear waves. The
second-order derivative term in the nonlinear artificial dissipation model is combined with the artificial
selective damping model to improve the shock-capturing property progressively. Quasi-one-dimensional
formalism is presented in the generalized coordinates for Problem 1 and 2 in Category 1 of the Third CAA
Workshop on Benchmark Problems. An adaptive constant is devised to control the local magnitude of the
dissipation level automatically and need not be readjusted for a variety of problems. The compressible
Euler equations in the conservative form are solved for the present computations. The optimized fourth-
order compact schemes based on the central differences [9, 10] are used for evaluation of the spatial
derivatives and the classical fourth-order Runge-Kutta method is used for temporal integration of the flow
variables. The feasibility and performance of the adaptive nonlinear artificial dissipation model are
investigated for CAA in the present paper.
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2. Governing Equations

The entire conservation forms of quasi-one-dimensional Euler equations are used for the governing
equations of Problems 1 and 2 in Category 1. The equations are fully nonlinear ones, which are somewhat
different from the equations of non-conservation form provided by the Workshop Committee. The words
‘conservation form’ mean all the spatial variables including transformation metrics and Jacobian are
contained in the differential operator. The equations are expressed in Cartesian coordinate as

3(AQ) , AAE)
ot ox

~H=0 (2-1)

where Q is the vector of conservative variables, E is the vector of inviscid fluxes and H is the source vector.
A = A(x) is the cross-sectional area. The vectors and their components of the conservative variables and the
inviscid fluxes are expressed as

Q=lp.pu, ], E=[pu, pu?+p, (oo +pM
where the total internal energy e is defined as

e -1 2.

1
t +-u
y-1 2

© o

Actually, the equation (2-1) should be transformed to those in the generalized coordinate for obtaining
efficient solutions on variable grid meshes. The equations in the generalized coordinate are expressed as

o(AQ) , 9(AE) g, (2-2)
ot o0&

The superscript ‘[T denotes the functions in the generalized coordinates system. These vectors are given as

A—g A:EXE
Q_J’ E J

where J is the transformation Jacobian and Sx is the transformation metric from the Cartesian to the
generalized coordinates. In the one-dimensional case, J is identical with Sx .

3. High-Order and High-Resolution Schemes and Boundary Conditions

Recently, the need of accurate and efficient numerical algorithms with high truncation order and high
resolution has been increased for CAA in that these are able to simulate the generation and propagation of
high-wavenumber (or high-frequency) and small-amplitude wave components directly. These are almost
non-dissipative and less dispersive than the standard low-order ones that have been used widely so far.
For the present work, the optimized fourth-order compact schemes are used for the evaluation of spatial
derivatives and the classical fourth-order Runge-Kutta scheme is used for the integration in time. To be
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compatible with the high-order and high-resolution schemes, the characteristic boundary conditions are
implemented as physically correct and time-dependent numerical boundary conditions for CAA.

Optimized Compact Finite Difference Scheme at Interior Nodes
The main scheme presented here is the pentadiagonal type of central compact scheme to be used on
interior nodes and it is the generalization of the Padé scheme of the seven-point stencil as shown below:

f,—f f,—f f,—f
': +af-l + f.' +af.’ + .I =¥ i+l i-1 + b i+2 i—2 +C i+3 i-3 3_1
Bfu—z i-1 i i+l ﬁf|+2 ZAE 4AE GAE ( )

where f; is a objective function, f ; is its spatial derivative at node i and a, b, ¢, a and [ are the coefficients of
compact discretization with an order of truncation. This is the central difference formation for the
evaluation of the first derivatives on the interior nodes. The relations to determine the truncation order of
this scheme are derived by using Taylor’s series expansion of Eq. (3-1). Only the tenth-order scheme has
unique values of the coefficients, and these are of the highest order obtainable with Eq. (3-1). The other
lower order schemes should have free coefficients that are not determined completely until more
constraints are imposed, and these can be used to improve the resolution characteristics. Analytic and
systematic constraints for the determination of the free coefficients are considered. The nature of these
constraints is minimization of the dispersive (phase) errors in the wavenumber domain by the Fourier
analysis. Using these constraints, the authors succeeded in optimizing the central compact schemes and
showed that the optimized fourth-order pentadiagonal scheme is the most accurate among the standard
central schemes and non-optimized compact schemes [9, 10]. The coefficients were obtained as follows:

a=1.279672797796143, b =1.051191982414920, ¢ =0.04475268855213291,
o =0.5900108167074074, [=0.09779791767419070.

Optimized Compact Finite Difference Scheme near and at Boundary Nodes

Equation (3-1) can be solved by inversion of pentadiagonal matrix and the matrix should be closed at
the boundaries. Therefore some different formulations were considered near and at the boundaries. The
non-central or one-sided compact schemes to be used on near-boundary and boundary nodes are
expressed as

H I I I 1 2

* 1=0: 1:0 +ao,1f1 +ﬁo,2 fz =A_E;a0,jfj ' (3'2)
- . 1 T 12 r_ 1 4

¢ =1: Ui, 1:o + f1 +ta,, fz + ﬁl,3f3 _A_f;al’j 1:j ! (3'3)
- . T 1 I ] " 1 S

e =2 32,ofo+0/2,1f1+f2+012,3f3+ﬁ2,4f4—A—E;az,jf,-- (3-4)

Equations (3-2)-(3-4) were derived to close the pentadiagonal matrix at the boundaries and the optimum
coefficients were so determined that the schemes became the fourth-order ones except on the boundary
nodes (i = 0) for numerical stability. These formulations are, of necessity, non-central or one-sided
differences and their error characteristics are both dispersive and dissipative. The two kinds of errors can
be analyzed simultaneously in the wavenumber domain by the Fourier analysis and the authors
minimized these errors with the analytic optimization method too [9, 10]. The relations to determine the
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truncation orders of these schemes are derived by using Taylor’s series expansion of Eq. (3-2)-(3-4). The
optimum coefficients were obtained as follows:

. i=0 : Second Order :
aoo = -2.95516745786296, ao1 =-1.63175038219495, ao.=4.28093227034817, ao3= 0.305985569709741,
Oo1 = 4.57321732196853, oo = 2.27485354566209.

e i=1: Fourth Order :
a1,0 = -0.643755519081585, a1 =-0.215562412498565, ai» = 1.39308006947385, a3 =-0.47778109295963,
a1.4 = -0.055981044934069,
a10 = 0.204356208611126, a1, = 0.046406522760991, [i3=-0.337432463538152.

e i=2: Fourth Order :
az0 = -0.147618978190642, a,1 = -0.659846174346428, a,, = -0.182251818640843, a,3 = 0.686060397630997,
a24 = 0.29761855559004, a25=0.00603801795687542,
B0 = 0.0402516485629226, a21 = 0.449236223001478, a3 =0.659998776315685, .. =0.10500904552933.

The optimum coefficients provide high accuracy and maximum resolutions for the central, non-central and
one-sided compact schemes, and these schemes were proposed as the optimized high-order compact
(OHOC) schemes. And these are used to evaluate the spatial derivatives accurately in the whole
computational domain for the present work.

Characteristic Boundary Conditions

The boundary conditions to be used for CAA in this paper are based on the local one-dimensional
characteristics. The characteristic variables are analyzed by transforming the governing equations to the
characteristic wave convection equations. The local one-dimensional relations between the characteristic
convection terms and the primitive variables are generated from the wave convection equations. The
physical boundary conditions are imposed to the characteristic convection terms using the local one-
dimensional relations. No extrapolations are needed in the implementation of the present boundary
conditions. Full nonlinear Euler equations in their entire conservation forms are directly solved at the
boundary without linearization or simplifications. The non-reflecting inflow/outflow conditions are used
for the steady mean solutions, and the transparent source conditions are employed to simulate the acoustic
disturbances at the inlet or outlet boundaries.

4. Adaptive Nonlinear Artificial Dissipation Model

The classical artificial dissipation consists of the second-order and fourth-order derivative term in
conservative form. The former is for a shock-capturing feature and the latter is for a background smoothing
effect. But the effect of the background smoothing term is so excessive that it may damp out the linear
acoustic waves seriously and it is not proper for CAA. On the other hand, the artificial selective damping
model lacks a stability to capture a high discontinuity generated from a strong nonlinear wave and still
produces numerical oscillations near the discontinuity. It was proposed in a non-conservative form so it
may have some error in reproducing the phase speeds of nonlinear waves if it is used in the original form.
In this paper, a revised formulation of the artificial selective damping term in conservative form is
presented. Then, it is desirable to combine the shock-capturing term and the artificial selective damping
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term as the background smoothing term. In this paper, this combination is proposed as an adaptive
nonlinear artificial dissipation (ANAD) model.

Quasi-one-dimensional formalism of an ANAD model is suggested in the generalized coordinates.
Consider the dissipation term added on the right hand side of the quasi-one-dimensional Euler equations
in the flux vector form at the i-th grid point as:

A(AQ)| , A(AE)|

-H. =D,
T R A

(4-1)

where the vectors of the conservative variables, the inviscid fluxes and the source term are represented in
section 2. The dissipation term D; is given by the flux differences of the midpoint values as

a8 (4-2)

Then the numerical dissipation flux vector in the generalized coordinates is given in this paper as

P o, )
e JH% ng (Qi+1 s'(+1 Z b QumE

(4-3)

| |stencil

= Ji.-%— { |(3)1 (Q|+1 Q ) Efi)l g)l (Qi+1 _Qi) +b2 (Qi+2 _Qifl) +b3 (Q' +3 _Qi 2

where the differencing coefficients of the background smoothing term are obtained by constructing the

conservative form of the artificial selective damping term, which is also the flux differencing form of the
midpoint values. The resulting coefficients are as follows:

b1 = -bo = -0.1624382574577463, b2 = -b.1 = 0.07309131357825455, b3z = -b» = -0.01447042896399915.

The cross-section area on the midpoint in Eq. (4-2) and the transformation Jacobian on the midpoint in Eq.
(4-3) are evaluated just by the arithmetic averages of their values on the adjacent two grid points as

The stencil eigenvalue and the absolute eigenvalue are defined as

el = maxq/\|l -min()

1+ m=-2

A

w) A= (o)

The nonlinear dissipation functions in Eq. (4-3) determine magnitudes of the second-order dissipation and
the fourth-order dissipation according to the change of pressure gradient. In regions of strong
discontinuity, the second-order dissipation, i.e. the shock-capturing term dominates and the fourth-order
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one is turned off. Out of the region, the second-order one becomes a very small value and the fourth-order
one, i.e. the background smoothing term, governs the dissipation. The nonlinear dissipation functions are
suggested in this thesis as

3
(2) =, (2) (4) = (4) _ o(2)
el =kPmax.,) &9 =maxpp,k“-£2),

where the shock detector, v; is given as

V. :|pi—1 _2pi TPin
I P +2p; Py

The adaptive control constants in the generalized coordinates are devised in this paper as

0 — +tanh(o-1)
K@ =x® :%g+(a—1)tanh%—1%\/ﬁa :
o g (4-4)

T
P A (AT 2ap

~_a+l _ A_B+1 :

4= C](_ltanh(a 1), B B_ltanh([} 1).

where the meanings of the superscripts, ‘max’ and ‘min’ are explained by the following relations:

ma imax min imax
f X:m%xfi, fm™ =m|0nfi.
1= 1=

The adaptive control constants expressed in EqQ. (4-4) are newly suggested in this paper for effective
applications of the artificial dissipation model to various CAA problems in the one-dimensional
generalized coordinates, which can be used for the linear and nonlinear waves at once. At each time step,
the optimal values of the control constants are calculated automatically by the flow properties. One need
not readjust the constants according to case-by-case nor waste additional computation time to find an
optimal value of them.

5. Application to Benchmark Problems

In this section, the numerical algorithms and ANAD (adaptive nonlinear artificial dissipation) model
presented in this thesis are applied to actual computations of Problems 1 and 2 of Category 1 in the Third
CAA Workshop on Benchmark Problems, and their accuracy and performance are investigated. It is shown
that the ANAD model enables the central difference schemes to simulate the propagation of sound waves
and shock-sound interactions in the transonic nozzle successfully.
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Problem 1 of Category 1

The numbers of grid points used are 301 and the grids are clustered near the nozzle throat. The time
step used is determined by CFL condition with a Courant number of 0.9. The convergence criterion for the
steady state is that the maximum value of the residual defined as | pm+b-pm | /oM is below 1x10° which is
the order of machine error. The computation time to obtain the steady mean solutions is 92.6 second in
25,000 operations using an IBM PC with an Intel Celeron Processor of 400 MHz. After the steady state is
reached, the acoustic perturbation starts at the exit plane, and the periodic oscillatory state with constant
magnitudes is achieved after 25 wavelets are produced. The error residual history for steady mean
solutions is represented in Fig. 1.

The steady mean solutions are represented in Fig. 2, where it is shown that the numerical solutions are
in good agreement with the analytic solutions. The perturbation distributions (p(x) - p(x), p(x)-p(X),

u(x)—u(x)) at an instant are expressed in Fig. 3, where the interference between incident and reflected

waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the
downstream region are shown well. The distribution of maximum pressure perturbation in one period is
represented in Fig. 4.
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Fig. 1. Error residual history for steady mean solutions: Problem 1 of Category 1.
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Problem 2 of Category 1

The number of grid points used is 251 and the grids are clustered near the nozzle throat. The CFL
condition for time step and the convergence criterion for the steady state are the same as for Problem 1. The
computation time to obtain the steady mean solutions is 46.1 second in 16,000 operations using an IBM PC
with an Intel Celeron Processor of 400 MHz. After the steady state is reached, the acoustic perturbation
starts at the inlet plane, and the periodic oscillatory state with constant magnitudes is achieved after 25
wavelets are produced. The error residual history for steady mean solutions is represented in Fig. 5.
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Fig. 5. Error residual history for steady mean solutions: Problem 2 of Category 1.
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The steady mean solutions are represented in Fig. 6, where it is shown that the numerical solutions are in
good agreement with the analytic solutions. The perturbation distributions (p(x)- p(x), p(x)-p(x),
u(x)-u(x)) at an instant are expressed in Fig. 7, where the interference between incident and reflected

waves at the upstream region, the shock-sound interaction at the throat, and the transmitted waves at the
downstream region are shown well. The exit pressure signal through one period is represented in Fig. 8.
The results in Fig. 7 and 8 are also in good agreement with the analytic solutions that are provided by the
committee of the Third CAA Workshop on Benchmark Problems.
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Fig. 6. Steady mean solutions compared with analytic solutions: Problem 2 of Category 1.
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Abstract

The optimized upwind DRP scheme (refs. 1 and 2) and the method of space-time CE/SE (ref. 3) are used to
solve two of the workshop benchmark problems, problems 1 and 2 of category 1. For problem! of category
1, both uniform and non-uniform grids are considered. A nearly converged solution is achieved with 400
uniform grid points for the upwind DRP scheme and with 1600 uniform grid points for the CE/SE method.
The use of the non-uniform grid points significantly reduces the number of grid points needed for obtaining
accurate numerical solutions. The pressure fluctuation increases drastically around the throat of the nozzle.
The fluctuation is accurately predicted by the upwind DRP scheme. For problem 2 of category 1, a
converged solution is achieved with 200 uniform grid points for both numerical methods. The steady flow
variables for both problems are calculated using the CE/SE method. The calculated steady flow solutions
agree with the analytical solutions very well.

Introduction

Aeroacoustic problems are governed by the same equations as those in aerodynamics, namely the Navier-
Stokes equations. Aeroacoustic problems, however, have their own nature, characteristics and objectives,
which are distinctly different from those commonly encountered in aerodynamics (ref. 4). During the past
years, many numerical schemes have been developed and applied for computational aeroacoustics. For the
current investigation, two of the numerical schemes, the optimized upwind DRP scheme (refs. 1 and 2) and
the CE/SE method (ref. 3), are used to solve problems 1 and 2 of category 1 for the 3 CAA benchmark
problems.

The optimized upwind DRP scheme was developed for computational aeroacoustics. The scheme is high
order accurate, uses fewer grid points per wavelength compared with that of standard high order accurate
schemes from the Taylor series expansion, and automatically damps out spurious short waves. The upwind
DRP scheme used here is the 7-stencil DRP upwind difference approximation with optimized coefficients.

The scheme is a fourth-order scheme. For instance, the first order derivativeg—” at the /" node of a grid with
X

spacing A x is approximated by,

u 1 & u 1 &
= — a.u,, . or = — a. u,, .
%E Ax A,-ZZ o %% Ax _,-24 s
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where the coefficients a; (ref. 1) are:

a% = 0.041382855555706463 a* =0.016140071346698814
a* =-0.44077420643183318 a*2 = -0.12265083451112346
a2 =-0.50020513450976445 a* = 0.4544863568845881

aX =0.12475721579099250 and a® =-0.12475721579099250
a2 =-0.45448643568845881 as? = 0.50020513450976445
a* =0.12265083451112346 a;” =0.44077420643183318
a2* =-0.016140071346698814 as? = —-0.041382855555706463

The coefficients above are used for calculations in the interior computational domain. For the boundaries,
the coefficients (ref. 5) are:

a’t = -0.0283927780285557 a% =1/6
a%; =0.192107686530459 a% =-6/5
a®t =-0.617980095557289 a% =15/4
a’ =1.28536574416235 and a’ =-20/3
a’ = -2.14340185401956 a% =15/2
ad' =1.11244509330028 a® =-6

a’ = 0.199856203612323 al® =49/20

It is noted that a?o represents standard six order accurate one-side scheme and was obtained solely from the

. . . 60 - - . .. .
Taylor series expansion. The reason for choosing &; from the Taylor series expansion is that optimization

did not make visible improvement for this case. In addition, it is worthwhile to mention that af’ = —afﬁ and

a%® =-a®  The temporal discretization used in the scheme is from Tam and Webb (ref. 6).

The CE/SE method was developed for solving general fluid dynamics problems (ref. 3). The conservation
equations are solved in integral forms with flux conservation in space and time. Space and time are unified
and treated on the same footing. The CE/SE method used in the current study is a second-order scheme.

The objectives of the current investigations are to evaluate the accuracy of the two schemes for the
benchmark problems and to compare the solutions from the two numerical schemes.

Mathematical Formulations

It is known that the computation of sound wave propagation through a transonic nozzle and the simulation
of the shock-sound interactions are challenging problems for computational aeroacoustics (CAA). In order
to study the reliability and the accuracy of the current numerical methods for the CAA, simplified model
problems are formulated and solved using the upwind DRP and the CE/SE methods. The first problem is a
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one-dimensional acoustic wave transmission problem through a nearly choked nozzle; and the second
problem is described as a sound wave passing through a shock in a quasi-one-dimensional supersonic
nozzle. For both problems, the area of the nozzle is given by:

D —InZHX—Ij
50.536572 -0.198086e ™0 x>0
A(x)=10

X

D -In2
H.0 - 0.661514¢ e x<0

1)

The governing equations for both problems are the quasi-one-dimensional Euler equations. The
dimensionless form of the equations is given as follows:

9 9 )
_at(pA)+_aX(puA)—0 (2)
u, OuH,9p _
P ot +u0xE+ X 0 ®)
9 pa)+ 2 (pun)+(y-1)p 2 (ua)=0 (4)
ot 0 X 0 X

For problem 1, the inlet and outlet boundary conditions used in the computations are radiation boundary
conditions. At the inflow boundary,

v o-—pg=0 (5)

At the outflow boundary,

s P H o PH BHse
—m' o+ @+M)—n' 0= 0 10

“BH B B

where €=10"°, w=0.677and M =0.4. For problem 2, the radiation boundary condition and the outflow
boundary condition are used for the inlet and the outlet, respectively. At the inlet,

1 90 0 ,’H_ HB 2we 00 x
%?M Fria ,E__Eﬁl"v'z cos%qo%TM —t% (7)

p

. Dﬂ X
t 6
Sln%UEil—MJr% (6)
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At the outlet,

1 ap’+0p’:
1+M o0t  dx

(8)

au+Uau+éap -0 ©)
ot oX p ox

0p ,gop _ P PP, ;9 p (10)
ot dx ypHat

where £=10"°, w=0.6/Tand M =0.2006533 . The computational domain is considered as =10 < x < 10.

Results and Discussions

The solutions of the two problems of category 1 are presented. In the first problem, both uniform grid and
non-uniform grid are considered. All the variables are non-dimensionalized with the characteristic values in
the uniform region downstream of the nozzle throat. In the second problem, only uniform grid is considered.
All the variables are non-dimensionalized using the upstream values such as the inlet nozzle height, the inlet
gas density, and the inlet speed of sound, etc. The steady state solutions for both problems are solved using
the CE/SE method.

Category 1 Problem 1

The acoustic waves, with angular frequency w=0.677, are generated downstream of the nozzle and

propagate upstream through the narrow passage of the nozzle throat. Figure 1 shows the pressure
perturbation along the nozzle at time t =40 using the upwind DRP scheme with uniform grid. The numbers

of the grid points used in Figure 1 are 200, 400 and 800, respectively. We can see that a converged solution
is achieved with 400 uniform grid points. The maximum acoustic pressure distribution is shown in Figure 2
for the same numbers of the uniform grid points. However, after enlarging the region around the peak
pressure fluctuation of Figure 2, it is shown in Figure 3 that a non-uniform grid is needed to achieve a more
accurate solution if no more than 400 mesh points are allowed. The non-uniform grid points used in Figure
3 were obtained from the following transformation

=2 %ME (11)

B [L-& tanh (B)
where A=5, B=1.6and —1<£<1. The pressure perturbation along the nozzle at time =40 is shown in
Figure 4 for the CE/SE method with 200, 400 and 800 uniform grid points. It is shown in Figure 4 that a
converged solution is not achieved yet. As the number of the uniform grid points increases to 1600, a nearly

converged solution, shown in Figure 5, is obtained by the CE/SE method. Again if non-uniform grid points
are used, a converged solution can be obtained by fewer than 400 grid points. The steady flow solutions are
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calculated by the CE/SE method. Figure 6 shows the numerical solutions agree with the analytical solutions
very well.

Category 1 Problem 2

The small amplitude acoustic waves, with angular frequency w=0.677, are generated upstream at the nozzle

inlet and propagate downstream through a shock in a quasi-one-dimensional supersonic nozzle. The
pressure perturbations along the nozzle are shown in Figures 7 and 8 for the upwind DRP and the CE/SE
schemes, respectively. It is seen that a converged solution is obtained for both schemes with 400 uniform
grid points. The comparisons of the solutions from the two schemes are given in Figures 9, 10 and 11 for
pressure, density, and velocity perturbations. We can see that there are some discrepancies between the
results from the two schemes, particularly after the shock. Since the same density and pressure perturbations
are expected, the wiggles in the density perturbations from the upwind DRP scheme, shown in Figure 10,
are the result of numerical errors. The pressure, density, and velocity perturbations from the upwind DRP
scheme are shown in Figure 12. It is seen that the pressure and density perturbations are identical before the
shock but different after the shock. However, there are no wiggles in the density perturbations from the
CE/SE method (Figure 13). One possible reason for this is that the CE/SE method is based on the
conservative formulation whereas the upwind DRP is not. If the conservative formulation were used for the
upwind DRP scheme, the wiggles in the density perturbation would disappear. Pressure perturbations at the
exit through a period of time are given in Figure 14 for both the numerical schemes with 400 uniform grid
points. The numerical steady flow solutions are compared with the analytical solutions in Figure 15. The
agreement between the numerical solutions and the analytical solutions is excellent.

Results of the two benchmark problems suggest that for the first problem the fourth-order upwind DRP
scheme needs fewer grid points than the second-order CE/SE method if uniform grid points are used. This
result is expected since the upwind DRP scheme used has a higher order of accuracy. However, for the
problem involving a shock-sound interaction (the second problem), the CE/SE method gives more accurate
results due to the conservative formulation.

Conclusions

In the paper, the two problems of category 1 have been solved using two numerical schemes, the upwind
DRP scheme and the CE/SE method. The results show that both methods give accurate numerical solutions
for both benchmark problems. For the first problem if the same grid point distribution is used the advantage
of the higher order scheme is that it requires fewer grid points for achieving an accurate solution. However
when there is a shock wave in the flow field, the conservative formulation becomes crucial for the accuracy
of numerical solutions.
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ESSENTIALLY NON-OSCILLATORY METHODS FOR SHOCK-SOUND INTERACTION

Yong Seok Kim* and Duck Joo Lee**
Department of Aerospace Engineering
Korea Advanced Institute of Science and Technology
Taejon, Korea

SUMMARY

High-order modified flux type Essentially Non-Oscillatory (ENO) schemes are used to solve the
Shock-Sound interaction problem of Category 1. The shock-capturing capability inherent to the
ENO scheme eliminates the oscillations near shock effectively. The peculiar characteristic of the
ENO scheme is the adaptive stenciling, however, this free adaptation of stencils is not necessary in
regions where the solution is smooth. This drawback is remedied by biasing stencils toward those
that are linearly stable. Nonreflecting numerical boundary conditions are employed at the inflow
and outflow for both the steady-state solution and time-dependent solution.

INTRODUCTION

As the computer is developed rapidly, the fluid and the acoustic fields can be solved directly by
using CAA (computational Aeroacoustics) technique. A class of uniformly high-order accurate,
essentially nonoscillatory (ENO) schemes have been developed by Harten and Oshcer [1], Harten
et al. [2]. An attempt to apply the ENO schemes to aeroacoustic problems was made by Meadow,
Caughy, and Casper [3], who discussed spurious entropy waves in calculations of unsteady shock
in the flow field. J.Y. Yang [4] implemented the Lagrangian ENO interpolation of the third-order
accuracy. Ko and Lee [5] improved the fourth-order modified flux approach ENO scheme of high-
resolution and high-order. The ENO schemes used in this paper not only produce sharp shock
profiles but also resolve the small amplitude waves.

At the radiation fields, Thomson's [6-7] non-reflecting characteristic-based boundary condition
was used as the physical boundary conditions so that no propagating waves reflect back inward
contaminating the acoustic field. Thompson decomposed hyperbolic equations into wave modes
of definite velocity and then specified characteristic boundary conditions for incoming waves.

The starting point of his analysis was nonlinear Euler equations. The idea of his approach was
that one-dimensional characteristic analysis could be performed by consideration of the
transverse terms as constant source term. The amplitudes of outward propagating waves are
defined entirely from the variables inside computational domain, while those of inward
propagating waves are specified as the characteristic boundary conditions.

* Graduate Student
** Professor
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NUMERICAL METHOD

The ENO scheme used in this work is briefly described as follows [8]. Consider the one-
dimensional Euler equations of inviscid gas dynamicsin conservation law form:
0Q+0,F =0 (1)
where
Q=[p. pu, pe]

F=[ou pu?+p, (og+pu

p=(y -1[pe -0.507] )
h=e+p/p
y=14
Eq. (1) can be expressed in quasilinear form as:
0,Q+A(Q)2,Q=0 ©)
where A is the Jacobian matrix dF/0Q and has real eigenvalues:
(&, &, a) = (u u+c, u-c (4)

where c=,/yp/p is the sound speed. One can transform Eq. (3) to a diagonal form using the
A =RAR™ and W = R™Q relations:

oW +AdW =0 (5)
Eq. (1), based on Roe's approximate method, can be written as
Q,ml :Qr _AI_anu/z - an—1/2J (6)

where Izj’ll,z is the numerical flux and defined by
= n 1r-n n n n
Fian ZE[F,' +F R EDj+1/2:| (7)

In light of the Godunov-type method this reflects different ways of resolving the Riemann
problem at the cell interface and Roe's approach is an ingenious way of extending the linear wave
decomposition, which is the exact linear solution to Riemann's problem, to nonlinear equations.

Here for the first order upwind scheme, the components of the column vector ¢?+1,2 are given by:
§0; /2 = _|/\Ij+1/2|Rj_i1/2(Q?+l _an)

= —|/\'j+1,2|c‘iN' j+1/2
where R,,,,, is the right eigenvector matrix and W j.u2 is the element of the characteristic vector

as defined by:

ow =[awt, aw?, ow] =g -2, P +ou, P - sury )
0o ¢ pc pc O
The cell interface values are obtained by Roe's average. A higher-order ENO scheme for Eq. (1)
can be expressed in the form of Eq. (7) in terms of the numerical flux:

= n 1 n n n n
F il ZE[Fj +Fa R EDj+1/2:| (10)

(8)
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The components of ®7,,,, are defined as:

@ ao =0) 4@ 012) +05 (@ a0) ~[al wolfal oW+ 0l (@) — 0l (@)} (11)
where the characteristic speed, a'jﬂ,z, are the elements of the diagonal matrix A}ﬂ,z and the first
difference of a characteristic value, Aiw'j , is the Ith element of the characteristic vector,
AW = Rj‘fl,zAiQ}‘. g' are similar in the constant-coefficient case except three characteristic waves
exist. For the third-order accuracy these are given by:

0} (8)u/2) =0(@}.2) B} +5(a].2)B] +5(8).,)B) (12)
where the 0,0, ¢ functions and the values of divided differences are expressed as below in case

of third-order:
o(a) :|aj(1—}\|a1)/2

G(a) =a’ (2 -3rd +|Ad") /6 +a (L-[Ad) /6 (13)
6(a) =a*(1-]Ad")/6+a (2-3Ad +|Aa*) /6

B =m(A_w,,A.w)

Bl =m(AAwW,AAW), Bl=0 if(Aw <AwW) (14)

nl I I Al — ;
B, =m(A_Aw;,AAw;), B;=0 otherwise

ENO schemes are uniformly high-order accurate right up to the shock. However, they also have
certain drawbacks. One problem is with the freely adaptive stencil. This free adaptation of stencils
is not necessary in regions where the solution is smooth. For the present work, this drawback is
remedied by biasing stencils toward those that are linearly stable. Casper and Meadows [9] have
suggested a nonlinear biasing algorithm that retain the linearly stable stencils in smooth region,
yet allow more freedom near a discontinuity.

RESULTS AND DISCUSSIONS
The high-order ENO schemes discussed above are now applied to the solution of the shock-sound

interaction problem in a quasi-one-dimensional converging-diverging nozzle. The conservative
forms of the quasi-one-dimensional Euler equations are represented as follows:

0 0
— (AQ) +—(AF) = H 15
at( Q) ax( ) (15)
where

AR T B P
Q:Sou% F=pgpu’+p 3 Hzaod—D (16)

X O

Hpe + p)uH Jo
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The variables p,u, p,e and A are the density, velocity, pressure, total energy, and nozzle area,

respectively. And p is related to other variables by p =(y —1)[peI - p(u? +v2)/2J where y is the

ratio of specific heats.

The area of the nozzle and its derivative are illustrated in Fig. 1. A steady-state solution
(Fig. 2) is obtained from a third-order ENO scheme with a biased stencil algorithm when the
residuals are driven to 10™ order. It should be noted that this numerically converged initial
condition cannot be obtained with a freely adaptive stencil algorithm. Fig. 3 illustrates the
residual of the steady-state solution. A suitably converged solution demonstrates that the biased
stencil algorithm is well applied.

After steady state is achieved, an acoustic disturbance is introduced at the inlet, x=-10: At
the inlet boundary, the conditions are:

PO @ O 00 )
Y=L B %%@n%)%m—t% (17)

BE BvE BH

where & =1.0x10"°, w=0.6m, M, =0.2006533. The pressure will be set at the outflow
boundary to create a shock (p)

- =0.6071752. The calculation is performed on 251 cells clustered

near the nozzle throat. The time step used is determined by a CFL condition with a Courant
number of 0.9. The inflow is perturbed for 0<t/T, <50, where T, =2r/w is one period of the
incoming acoustic wave. Fig. 4 shows the perturbation at the start of a period
(X, p(X) =p(X), u(x) —u(x), p(x) —p(x)) over the period of the perturbation. The acoustic wave
propagates to the shock and where a reflected wave and a transmitted wave are formed. It is
observed that a large amplitude is generated at the shock position due to the interaction between
the acoustic wave and the shock wave. The pressure perturbation at the exit plane over one
period (t, p(t) - p(t)) is shown in Fig. 5.
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A Low Order and a High Order Solution
For A Converging-Diverging Nozzle Problem

John W. Goodrich
NASA Glenn Research Center
Cleveland, OH 44135

1 Introduction

The Computational Aeroacoustics Workshops on Benchmark problems are conducted in order to
generate solutions with a variety of methods for problems that are chosen both to be representative
of significant and relevant acoustic phenomena. It is generally recognized that CAA applications
require the resolution in time and in space of solution details over a significantly broader range
of scales than typical CFD applications. These requirements are forcing the development of new
methodologies for CAA applications. This paper presents numerical results from a third anda
seventh order algorithm for the propagation of an acoustic signal through a converging-diverging
nozzle. These two algorithms are members of a new family of high accuracy methods that have the
same order acuracuy in both space and time, and are an extension of previous work for linearized
Euler equations [3, 4, 5, 7] to fully nonlinear time dependent problems. The simulations are all with
the fully nonlinear quasi one dimensional Euler equations for the total solution, which includes both
the fluid dynamics and the acoustics. The acoustic solution is obtained from the time dependent
nonlinear solution by subtracting the steady solution.

2 The Governing Equations

The Euler equations for a quasi one dimensional problem with an ideal polytropic gas are:

Op  10Apv
ot + A or 0, (1)
ov Ov Op
E+U%+p55_07 (2)
Op Op ov 1dA
'8—t+053; +’YP8—$ +7pv71_d_:r =0, (3)

where p is pressure, p is density, and v is velocity, and where A(z) is the cross sectional area of
a converging-diverging nozzle. We will take v = 1.4 for air at standard conditions. The cross
sectional area of the converging-diverging nozzle A(z) is given as

A(z) = 0.536572 —0.198086 exp(— 2242y _10 <z <0,
(4)

= 1.000000 — 0.661514 exp(—2sdz?), 0 <z < +10.

Note that the first derivatives of A are continuous at = 0, but that the second and higher are not.
This implies that there will be jump conditions at the throat for the second and higher derivatives
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of the solution. The benchmark problem is scaled such that the conditions for the steady base
flow at the nozzle exit are: My, = 0.4; Voo = 0.4; poo = 1; Co = ,/7% = 1; and consequently,
Poo = "lv An O[10~°] acoustic disturbance is imposed on the O[1] steady flow at the nozzle exit, and
the goal is to find the time dependent pressure disturbance, and the maximum acoustic pressure

distribution.
For an ideal gas with constant specific heats, the entropy is S(z,t) = ¢, log(g’;), where

o5 + va—S =
ot or
so that entropy is convected with v. The stated problem has v > 0 throughout the nozzle, and

we may assume that the solution is isentropic. For the isentropic case with the scaling for this
problem,

0, (5)

1
p=;ﬂ, (6)
the pressure equation reduces to the continuity equation, and p can be eliminated. The speed of
2
sound ¢ = v/p?~1, or p = ¢7-T. The momentum equation can be written as

ov ov 2  Oec

a1 =0 @)

and the continuity equation can be written as

Oc dc -1 0v ~—-1 dlog(A)

b T S i =0. 8

ot +U63: + 2 ‘bz + 2 T dz ®)
Our general solution approach is to take S constant in the nozzle, with the value from the specified
steady solution at the nozzle exit, and to solve for ¢ and v with the momentum and continuity

equations. Note that the equations for ¢ and v have the Riemann invariants

2
Ri:’y—lc;tv’ (9)
and that for subsonic flow, Ry goes right and R_ goes left. A steady solution for the converging-
diverging nozzle is readily obtained as in Anderson [1]. The definition of entropy and the problem
reformulation in terms of ¢ and v is from Whitham [8].

3 Numerical Methods

The computational results reported in this paper are from fully nonlinear simulations. The time
accurate algorithms are used to compute converged steady solutions for the flow in the nozzle,
and then to propagate the acoustic disturbance by oscillating the outflow boundary data about
the steady solution values. The results presented in this paper are from two algorithms that are
nonlinear realizations of a method for developing algorithms that can be applied to a variety of
time evolution problems [3, 4, 5, 7]. Both of the algorithms for the nozzle problem must provide
accurate nonlinear propagation of the solution, stable inflow and outflow boundary conditions, and
jump conditions for second and higher order derivatives at the throat. Because of space limitations,
only a summary of the algorithms can be given here, but further details will be presented in [6]. A
comprehensive presentation of our method for developing algorithms is also being prepared.

The algorithms that we are using in this paper are for nonlinear propagation of ¢ and v, for
the total unsteady flow solution which includes the acoustic perturbation. The two nonlinear
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third order derivatives at each grid point, and are third and seventh order accurate in space and
time, respectively. Higher order methods are possible. We use a staggered grid with a two point
stencil, and data at each grid point for both ¢ and v, and their spatial derivatives up to the specified
order for each particular algorithm. We use a local Hermite spatial interpolation with data at one
time level, and then obtain time derivatives by a realization of the Cauchy-Kowaleskya method [2].
This approach yields a local approximation of the system solution, and not an approximation of
derivative terms in an equation, so that the dynamics of the governing system are built into the
algorithms. The solution variables ¢ and v, and their spatial derivatives up to the order specified
for each algorithm, are all propagated in time. The linear stability constraint is V%—i— < 1, where
V is the velocity maximum in the scale of the problem. These algorithms are not in conservation
law form.

At the inflow boundary, R, is specified as a function of time, and R_ is propagated from the
interior. At the outflow boundary, for the computation of the steady solution, R_ is specified
as a function of time, and R, is propagated from the interior, while for the propagation of the
unsteady acoustic disturbance, c is specified as a function of time, and R, is propagated from the
interior. The data for the acoustic disturbance is taken from the specified data for p(z,t) at the
right boundary. Spatial derivatives for the imposed boundary data can be obtained from the time
history of the boundary data.

There is a discontinuity in the second derivative of A at the throat, and consequently, in the
second and higher derivatives of the solution as well. Second or higher order interpolation across
the throat will introduce errors, and a special treatment at the throat is desirable. At the throat,
we compute R, and its required spatial derivatives by propagation from the left, and R_ and its
required derivatives from the right. The interpolation stencils for each method are taken on the
appropriate side of the throat. In the case of the third order c201jd1 algorithm, only ¢, v, 8;c and
Ozv are required at the throat, and since they are continuous across the throat, this data can be
obtained directly from the data for the Riemann invariants. In the case of the seventh order c203jd3
algorithm, the second and third derivatives are different on either side of the throat, and these values
must be obtained from the second and third derivatives of Ry with their jump conditions. The
jump conditions are obtained from the evolution equations for the Riemann invariants.

4 Numerical Results

Numerical results will be presented from the third order c201jd1 algorithm with Az = Q—ég, and
from the seventh order c203jd3 algorithm with Az = %. Both algorithms use a uniform grid and
take ﬁ—; = %. Note that the third order method uses approximately twelve times the number of
grid points as the seventh order method. With both algorithms, a steady solution is computed,
then time is reset to 0 and the disturbance oscillation is imposed. The acoustic disturbance at the
boundary is run for at least 0 < ¢ < 100 in order to let transients pass out of the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>